
Supporting composed SDN applications
and controller independence with NetIDE

Alec Leckey

Intel Labs

SDN Application Development

Java Python C/C++ Javascript

Beacon

Floodlight

Iris Pox

Ryu

PyreticMaestro Open
Daylight

Jaxon

Nox

MuL

Trema

NodeFlow

?

Openflow OVSDB OF-Config NetConf PCEP

Cobol

?

Several IDE components are available,
“automation” chain is still missing I2RS

Key network services to support integration
between development and testing are missing
too

ONOS
Proliferation of SDN frameworks: No
“one solution fits all”

Opportunities for current SDN landscape

Software-Defined Networks

SDN Applications

Can’t easily port them:
You implement for

Controller X, you can’t
make same code run

on Controller Y

Can’t easily combine them:
Eg, You can’t run an LB app

together with an FW app
on top of the same network

Can’t easily debug them:
Only few SW development

tools are available for
SDN, in most cases
controller-specific

SDN
Apps

Challenges for current SDN landscape

NetIDE aims at supporting the whole development lifecycle of SDN
applications in a platform-independent fashion:

• Integrated SDN development environment

• Covering the full lifetime of SDN applications

• It brings all the elements of Software Design/Development to Networking:
• Platform independence

• Code re-usability

• Developer tools (debugger, profiler, logger, etc.)

The NetIDE Framework

Client/Server SDN controller paradigm of ONF:

• SDN Application’s modules are given the runtime
environment they expect in the client controller

• Multi-controller support (ONOS, OpenDaylight, Ryu,
Floodlight, etc)

• Backend: Captures control messages translating them to
controller neutral format (ie, Intermediate Protocol)

• Core Layer: provides a controller-independent means to
compose applications, resolve conflicts, provide an
interface to tools

• Shim Layer: northbound plugin to pass control messages
south and incoming events north

The NetIDE Architecture

Migration of SDN Apps from legacy
controllers to ODL easier
- Client/Server model of SDN controllers
- Client Controllers communicate with

switches through an interop layer

• SDN Application’s consume expected API
• Backend: provide switch implementations
• Core: provides a controller-independent

messaging layer
• Shim: passes messages to relevant API

Client
SDN

Controller

Floodlight Ryu

Controller Plane

Server
SDN

Controller

other

OpenDaylight

backend backend backend

shim

Application Plane

SDN App SDN App SDN App

Data Plane Network
Element

Network
Element

Network
Element

NetIDE Intermediate Protocol
NetIDE

Network Engine

NetIDE Core (AMQP)

Network Engine Implementation with ODL

Intermediate Protocol
Implements:

• Transport Management Messages between
Layers

• Transport Event/Action messages

• Encapsulate protocol Messages (OF, NetConf)

• NetIDE Header:
• Module Identifier:

unique value that allows the Core to orchestrate individual
modules of each client controller

• Type
Hello, Error, Mgmt, Openflow, Netconf, HeartBeat,
ModuleAnnouncement, ModuleAcknowledgement,
Handshake

NetIDE Header

Request/Reply message handling

Core Layer

Implements 3 main functions:

• Interface between Client Backends and Server Shim: manages lifecycle of
controllers including modules

• Orchestrates execution of individual modules/complete applications
spread across multiple controllers

• Manages symmetric messages (request/reply) exchanged between
modules and network elements

Core Connection
Manager

Conflict
Resolution

Module
Manager

Composition
Message
Tracker

backend 1 backend 2

shim

Application Composition

• The Network Engine allows SDN Application’s modules written for
different controller platforms to cooperate on controlling the same
network infrastructure

• The Core Layer in the Engine implements conflict resolution and
composition mechanisms that are independent from the applications

• Modules are composed into a single NetIDE SDN application at
deployment time

• Composition Semantics: + >> () }
• (NAT + L3) + (L2 >> Mon)

+ >>

}

Composition Execution
<ExecutionManifest>

<Modules>
<Module id=“NAT">

<Identier>eu.netide.nat</Identier>
</Module>
<Module id=“L3-fwd">

<Identier>eu.netide. l3_fwd</Identier>
<Filter>event=packet_in,source=10.1.0.*</Filter>

</Module>
<Module id=“L2-fwd">

<Identier>eu.netide.l2_fwd</Identier>
</Module>
<Module id=“Monitor">

<Identier>eu.netide.monitor</Identier>
</Module>

</Modules>
<ExecutionPolicy>

<ModuleCall id=“NAT"/>
<ModuleCall id=“L3-fwd" emptyResultAction="drop"/>
<ParallelCall mergePolicy="priority">

<ModuleCall id=“L2-fwd" priority=“2"/>
<ModuleCall id=“monitor" priority=“1"/>

</ ParallelCall >
</ExecutionPolicy>

</ExecutionManifest>

• Module list

• Execution Semantics
• Parallel composition
• Sequential

• Composition Specification
• Execution flow

• Conflict Resolution
• Define conflict (match, action)
• Scope (local, application, global)
• Resolution Policy (ignore, discard, priority, auto)

Message Fencing

• Application Composition is dependent on knowing when a module has
completed processing an event

• May send message prematurely

• Wait indefinitely

• “Fence” – end of execution marker
• SDN Controller signal processing complete, eg, IControllerCompletionListener{}

(Floodlight)

PACKET_IN PACKET_OUT FLOW_MOD FENCEPACKET_IN PACKET_OUT …

module_id=A
nxid=1

module_id=A
nxid=1

module_id=B
nxid=2

module_id=A
nxid=1

module_id=A
nxid=1

module_id=B
nxid=2

13

Demo Scenario

s22

s21

s23

s11alice

bob
www

charlie

Core

odl-shim

fl-backend ryu-backend

L2 switch Firewall

Tools

Develop the code and
configure the topology

Automatically deploy
the SDN applications

Test and debug the
applications

Develop - Deploy - Test

Code Editors Graphical
Topology Editor

Tools for debugging and
inspecting of the control

channel

Code Editors (PyDev, Java)

Topology editor

Interface with the
Network Engine and tools

Access to the Mininet CLI

Mininet CLI

Integrated Environment

Graphical editor:
• create and edit network

topologies

• import underlying topology

• A topology generator outputs a
configuration file for Mininet for
testing

Topology Editor

Management Tasks:
• Start/stop the VM
• Configure/start/stop the

Network Engine
• Start/stop SDN applications

Runtime Management GUI

Enabling the developer to systematically test, profile, and tune their SDN App

Logger: tracing capabilities to judge the performance of the deployed SDN Application
Garbage Collector: Cleans the switches’ memory from unused flow rules
Model Checker: systematically exercises app behaviour and flag actions that lead to violations of the desired

safety properties
Profiler: judging the impact of network failures on the Network App behaviour
Debugger: supports debug of packet processing (OFReplay, packet inspection and flow table checking)

Developer Tools

Project Presence

Questions

