
Networking-vpp:
An OpenStack ml2

driver for VPP
Jerome Tollet / Ian Wells

FD.io Program | April 30th, 2017

fd.io Foundation 1

Agenda

•What is networking-vpp?
• Design principles
•Overall architecture
• Current feature set
• Focus on HA features

• Clustering etcd
• Transactional port setup

• Focus on Security features
• Roadmap for 17.07
•Questions

fd.io Foundation 2

What is networking-vpp

• FD.io / VPP is a fast software dataplane that can be used to speed up
communications for any kind of VM or VNF.

• VPP can speed-up both East-West and North-South communications

• Networking-vpp is a project aiming at providing a simple, robust,
production grade integration of VPP in OpenStack using ml2 interface

• Goal is to make VPP a first class citizen component in OpenStack for NFV
and Cloud applications

fd.io Foundation 3

Networking-vpp: Design Principles

•Main design goals are: simplicity, robustness, scalability

•Efficient management communications
• All communication is asynchronous

• All communication is REST based

•Robustness
• Built for failure – if a cloud runs long enough, everything will happen eventually

• All modules are unit and system tested

•Code is small and easy to understand (no spaghetti/legacy code)

Networking-vpp: current feature set
• Network types

• VLAN: supported since version 16.09

• VXLAN-GPE: supported since version 17.04

• Port types
• VM connectivity done using fast vhostuser interfaces

• TAP interfaces for services such as DHCP

• Security
• Security-groups based on VPP stateful ACLs

• Port Security can be disabled for true fastpath

• Role Based Access Control and secure TLS connections for etcd

• Layer 3 Networking
• North-South Floating IP

• North-South SNAT

• East-West Internal Gateway

• Robustness
• If Neutron commits to it, it will happen

• Component state resync in case of failure: recovers from restart of Neutron, the agent and VPP

Networking-vpp, what is your problem?

•You have a controller and you tell it to do something

• It talks to a device to get the job done
• Did the message even get sent, or did the controller crash first? Does the

controller believe it sent the message when it restarts?

• Did the message get sent and the controller crash before it got a reply?
• Did it get a reply but crash before it processed it?
• If the message was sent and you got a reply, did the device get programmed?
• If the message was sent and you didn’t get a reply, did the device get

programmed?

fd.io Foundation 6

Networking-vpp, what is your problem?

• If you give a device a list of jobs to do, it’s really hard to make sure it
gets them all and acts on them

• If you give a device a description of the state you want it to get to, the
task can be made much easier

fd.io Foundation 7

Networking-vpp: overall architecture

Compute Node

VPP

M
L2

 A
ge

n
t

VM VM VM

vhostuser

Compute Node

VPP

M
L2

 A
ge

n
t

VM VM VM

vhostuser

Neutron Server

ML2 VPP
Mechanism Driver

journaling

HTTP/json

dpdkdpdk

vlan / flat network

Networking-vpp: port creation process

Compute Node

VPP

M
L2

 A
ge

n
t

VM

vhostuser

Neutron Server

ML2 VPP
Mechanism Driver

dpdk

2
3

5

4

3

networking-vpp/nodes/vpp-rocks/ports/c367e
21f-ae39-4549-b87d-2e69636155c6

{"allowed_address_pairs": [], "segmentation_id": 194,
"mtu": 1500, "binding_type": "plugtap", "physnet":
"physnet", "mac_address": "fa:16:3e:03:ce:ff",
"port_security_enabled": false, "fixed_ips":
[{"subnet_id":
"006fce47-6072-4099-a695-c3caa140fff7",
"ip_address": "10.0.0.2"}, {"subnet_id":
"81b2fbdc-c350-4f35-9b9b-909cf33a4426",
"ip_address": "fd59:3bf6:c35d:0:f816:3eff:fe03:ceff"}],
"network_type": "vlan", "security_groups": []}

 /networking-vpp/state/vpp-rocks/ports/d2069a46-3a47-4ec7-94fb-3b1bcd4c
6dc0

{"net_data": {"segmentation_id": null, "if_physnet": "tap-2", "bridge_domain_id": 3,
"if_uplink_idx": [3], "network_type": "flat", "physnet": "physnet"}, "bind_type": "plugtap",
"ext_tap_name": "tapd2069a46-3a", "mac": "fa:16:3e:5d:fe:c4", "bridge_name":
"br-d2069a46-3a", "int_tap_name": "vppd2069a46-3a", "iface_idx": 6}

Request Notification
1 5

1

2

Networking-vpp: Resync mechanism

• The agent marks everything it puts in VPP

• If the agent restarts, it comes up with no knowledge of
what’s in VPP, so it reads those marks back

• While it’s been gone, things may have happened and etcd
will have changed

• For each item, it can see if it’s correct or if it’s out of date
(for instance, deleted), and it can also spot new ports it’s
been asked to make

• With that information, it does the minimum necessary to fix
VPP’s state

• This means that while the agent’s gone, traffic keeps moving

• Neutron is abiding by its promises (‘I will do this thing for
you at the first possible moment’)

fd.io Foundation 10

Compute Node

VPP

M
L2

 A
ge

n
t

VM

vhostuser

dpdk

Networking-vpp: HA etcd deployment

• etcd is a strictly consistent store
that can run with multiple
processes

• They talk to each other as they
get the job done

• A client can talk to any of them

• Various deployment models –
the client can use a proxy or talk
directly to the etcd processes

fd.io Foundation 11

The service

The processes

Client

Networking-vpp: Security and RBAC

•Etcd can work over TLS (HTTPS) when talking to itself and its clients

•Each client can have a credential that gives it limited access (R, RW,
None)

•Networking-VPP is designed so that nearly all the keys are written by
only one type of process

RBAC can be used to protect the datastore from both confused and
malicious processes

fd.io Foundation 12

Networking-vpp: Role Based Access Control

fd.io Foundation 13

Compute Node 1

Neutron Server

HTTPS/json

Compute Node 2

• Security Hardening
• TLS communication between

nodes and ETCD :
• Confidentiality and integrity of the

messages in transit and
authentication of ETCD server.

• ETCD RBAC :
• Limit the impact of a compromised

Compute Node to the node itself

Networking-vpp: Role Based Access Control

fd.io Foundation 14

ETCD/Node1
Requests

ETCD/Node1
Status

ETCD/Node2
Requests

ETCD/Node2
Status

Neutron Server R/W R/O R/W R/O

Compute Node 1 R/O R/W Access Denied Access Denied

Compute Node 2 Access Denied Access Denied R/O R/W

Networking-vpp: simplicity

$ rm -rf tests

$ wc `find . -name *.py -print`
 2886 11520 123320 ./agent/server.py
[...]
 921 2834 35173 ./agent/vpp.py
[...]
 1067 4607 46112 ./mech_vpp.py
[...]
 7336 27864 290940 total

fd.io Foundation 15

Most of the agent code

A nicer VPP Python API

Most of the mechanism driver

NB: this code has comments – 1839 lines of code in the above three files

Networking-vpp: extensibility

Today: the agent will implement in VPP whatever the datamodel in
etcd says it needs
It can do more:
•Extend that model
•Plug in code to the agent to respond to it

Benefit: keeping all the robustness
Limitation: where do we put the intelligence?

fd.io Foundation 16

Networking-vpp: Port bind request etcd
model
Port state Key/Value sample

• networking-vpp/nodes/{SERVER}/{PORT UUID}

Port state Key/Value sample

networking-vpp/nodes/vpp-rocks/ports/c367e21f-ae39-4549-b87d-2e69636155c6

{ "allowed_address_pairs": [],

"segmentation_id": 194,

"mtu": 1500,

"binding_type": "plugtap",

"physnet": "physnet",

"mac_address": "fa:16:3e:03:ce:ff",

"port_security_enabled": false,

"fixed_ips": [{"subnet_id": "006fce47-6072-4099-a695-c3caa140fff7", "ip_address": "10.0.0.2"},

{"subnet_id": "81b2fbdc-c350-4f35-9b9b-909cf33a4426", "ip_address": "fd59:3bf6:c35d:0:f816:3eff:fe03:ceff"}],

"network_type": "vlan", "security_groups": []

}

fd.io Foundation 17

Networking-vpp: port state etcd model

Port state Key/Value model

• /networking-vpp/state/{SERVER NAME}/ports/{PORT UUID}

• the ports that the VPP agent has programmed VPP with (the same list - it's done all its jobs), plus the physnets that this host knows about

• Key is inserted by the Agent in etcd when port is created into VPP.
• Value is for debugging purpose (e.g. port indexes, bridge names)

Port state Key/Value sample

/networking-vpp/state/vpp-rocks/ports/d2069a46-3a47-4ec7-94fb-3b1bcd4c6dc0

{"net_data": { "segmentation_id": null, "if_physnet": "tap-2", "bridge_domain_id": 3,

"if_uplink_idx": [3], "network_type": "flat", "physnet": "physnet"},

"bind_type": "plugtap",

"ext_tap_name": "tapd2069a46-3a",

"mac": "fa:16:3e:5d:fe:c4",

"bridge_name": "br-d2069a46-3a",

"int_tap_name": "vppd2069a46-3a",

"iface_idx": 6}

fd.io Foundation 18

Networking-vpp: Security Groups etcd
model
Security Group etcd Key/Value structure

• /networking-vpp/global/secgroups/{SECGROUP UUID} -> JSON SecGroup detection

Security Group Key/Value sample

/networking-vpp/global/secgroups/2be282a7-0a04-4411-9a8f-4eeb1c676454

{"ingress_rules": [
{"is_ipv6": 0, "remote_ip_addr": "0.0.0.0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max": 0},
{"is_ipv6": 1, "remote_ip_addr": "0:0:0:0:0:0:0:0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max": 0}

"egress_rules": [
{"is_ipv6": 1, "remote_ip_addr": "0:0:0:0:0:0:0:0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max": 0}, {"is_ipv6": 0,
"remote_ip_addr": "0.0.0.0", "ip_prefix_len": 0, "protocol": 0, "port_min": 0, "port_max": 0}]

}

fd.io Foundation 19

Networking-vpp: [VXLAN|LISP]-GPE

•VXLAN-GPE was introduced in networking-vpp 17.04
•Encapsulate layer 2 frames from the VMs into layer 3 packets (GPE)
•Provides very large horizontal scaling and isolation

•When a VM is created, MAC address (aka EID) is populated in all VPP
bridge domains belonging to the same VNI

•GPE data stored under /networking-vpp/global/networks/gpe

fd.io Foundation 20

Networking-vpp: [VXLAN|LISP]-GPE etcd
model
GPE etcd Key/Value structure

• /networking-vpp/global/networks/gpe/{VNI}/{HOSTNAME}/{MAC_ADDRESS} -> Underlay IP
address

GPE Key/Value sample

• /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-3/fa:16:3e:ba:a8:12

• /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-3/fa:16:3e:20:3e:c2

• /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-2/fa:16:3e:eb:c9:d8

• /networking-vpp/global/networks/gpe/1007/sjo-smf-ubuntu-server-2/fa:16:3e:82:50:81

fd.io Foundation 21

Networking-vpp: layer 3 routers model
Layer 3 etcd Key/Value structure

• /networking-vpp/nodes/{SERVER}/routers/interface/{INTF UUID}
• Details of a single Neutron router interface i.e. tenant network interface on a neutron router

• /networking-vpp/nodes/{SERVER}/routers/router/{ROUTER UUID}
• Details of a single neutron router including external networking details if a ruoter gateway is set

• /networking-vpp/nodes/{SERVER}/routers/floatingip/{FIP UUID}
• This etcd entry contains the data required to program 1-to-1 SNAT on a single VPP router.

Layer 3 etcd Key/Value sample

/networking-vpp/nodes/bxb-ds-51.bxb.os/routers/interface/9d8cd87b-09be-4b87-96b8-b29e1e771ae9

• {"segmentation_id": 181, "mtu": 1500, "vrf_id": 1, "gateway_ip": "20.0.0.1", "prefixlen": 24, "net_type": "vlan", "loopback_mac": "fa:16:3e:b9:48:86", "physnet": "physnet1", "is_ipv6": false}

/networking-vpp/nodes/bxb-ds-51.bxb.os/routers/router/9d8cd87b-09be-4b87-96b8-b29e1e771ae9

{ "status": "ACTIVE", "external_gateway_info": {"network_id": "c9316ebc-65a9-4b31-b478-18bd9e82a396", "enable_snat": true, "external_fixed_ips": [{"subnet_id": "ef282a5d-01c0-4858-8eaa-fb57386dfb23",
"ip_address": "50.0.0.9"}]}, "external_segment": 133, "description": "", "gw_port_id": "4bc69cb0-4a42-49cf-8d8c-8c5ff3d31628", "admin_state_up": true, "tenant_id": "5d0cd1a146be414f9fc482ba557e035b",
"created_at": "2017-04-20T20:38:50Z", "updated_at": "2017-04-24T16:33:59Z", "name": "r1", "external_physnet": "physnet1", "gateways": [["50.0.0.9", 24]], "revision_number": 12, "vrf_id": 1, "project_id":
"5d0cd1a146be414f9fc482ba557e035b", "id": "9d8cd87b-09be-4b87-96b8-b29e1e771ae9", "external_net_type": "vlan"}

/networking-vpp/nodes/bxb-ds-51.bxb.os/routers/floatingip/aaae2779-2713-4e26-a68e-b851af86ff0d

{ "internal_segmentation_id": 181, "external_net_type": "vlan", "internal_net_type": "vlan",

"fixed_ip_address": "20.0.0.7", "floating_ip_address": "50.0.0.4", "external_segmentation_id": 133, "event": "associate", "physnet": "physnet1 » }

fd.io Foundation 22

Networking-vpp: Roadmap

Next version will be networking-vpp 17.07
• Security Groups

• support for remote-group-ID
• Support for additional protocol fields

• VXLAN-GPE
• support for ARP handling in VPP
• Resync states in case of agent restart

• Improved layer 3 support:
• support for HA (VRRP based)
• Resync for layer ports

• Testing, testing, testing

fd.io Foundation 23

