Solving the L3-VPN use cases with Nirvana Stack

Paul Carver (ATT), Thomas Morin (Orange), Frank Brockners (Cisco)

Solving the L3-VPN use cases with Nirvana Stack

- Overview of L3VPN use-cases
- Current state of components for a L3VPN solution (OpenStack Neutron, OpenDaylight and OPNFV)
- Evolving L3VPN solution stacks to include FD.io/VPP using the Nirvana Stack approach

L3VPN Use-Cases

L3VPN Use-Cases

- Any-to-Any Case
- ECM Load splitting case
- Hub & Spoke case

Any-to-Any Case

- Multi-tenancy
- Segregation of Traffic

- Overlapping Address Space
- Any to any connectivity within VPN

ECMP Load Splitting Case - AnyCast

Tenant 1 Blue 10.1.1.0/24

Multiple instances of a VNF are reachable through the same IP.

For example, Traffic to 10.1.1.5 can load split among 3 VNFs (G1.1, G1.2, G1.3)

Need separate RD for anycast end point to segregate traffic

Hub and Spoke Case

G1 Hub VRF

RD1 10.1.1.5 IP_OVR1 Label1 RD1 0/0 IP_OVR1 Label1 Label 1 Local IF (10.1.1.5) RD3 10.3.7.9 IP_OVR1 Label2 RD2 10.1.1.6 IP_OVR2 Label3 RD4 10.3.7.10 IP_OVR2 Label3

G2 Spoke VRF

RD1 0/0 IP_OVR1 Label1 RD3 10.3.7.9 IP_OVR1 Label2 VNFs can not communicate directly with one another. Need to go through FW.

VNF (spoke)

- exports spoke routes
- imports only hub routes.

FW (hub)

- exports hub routes
- imports and exports spoke routes

Basic building block of service chaining

Current state of L3VPN solutions (OpenStack, OpenDaylight and OPNFV)

Emergence of a Neutron API for BGP VPN Interconnections

- Back in 2015: a variety of SDN controllers, each with their API to configure things related to BGP VPNs
 - OpenDaylight
 - OpenContrail
 - Nuage Networks
 - Cisco VTS
 - •
- Need for a single multi-tenant API to let tenants/orchestrator drive BGP VPN connectivity without being coupled to a specific backend

=> June 2015: Neutron BGP VPN Interconnection service (networking-bgpvpn Neutron Stadium project)

Neutron BGP VPN Interconnection service

Status of Neutron BGP VPN Interconnection service

- Drivers for Neutron ML2 OVS and SDN controllers supporting the feature
- API to interconnect with both IP VPNs and EVPN/VXLAN
- Feature coverage addressing key aspects of the use-cases
 described here
 - including anycast and hub'n'spoke
 - without per Neutron port granularity, nor static routes
- Planned API evolutions on the radar:
 - Port associations
 - Static routes
 - Control of BGP local_pref and communities

Neutron BGP VPN API and the controller NBI, discussion

- "Common API + driver" model allowing us to use our stack of choice, without user/orchestrator visible changes
 - migrate toward a Nirvana stack tomorrow
 - migrate to whatever is the new Nirvana three years down the road ?
- Open question
 - How can we facilitate migrations ?
 - Allowing simultaneous use of multiple backend drivers ?

Neutron BGP VPN and OPNFV

- Neutron networking-bgpvpn project has a peer project in OPNFV: 'SDNVPN'
- In OPNFV, the SDNVPN project aims at integrating a complete stack for BGP VPNs:
 - Currently focusing on cases where an SDN controller is used
 - Integration with installers:
 - Fuel (Mirantis) and TripleO/Apex (RedHat)
 - Provides deployment scenarios derived from odl_l3, both HA and non-HA

State of BGP VPN implementation in ODL

BGP VPN has been implemented in ODL Netvirt:

- Leverages Quagga
 BGP implementation
 for route exchange
- OVS/OVS-DPDK
 as the dataplane

Strawman: Evolving L3VPN solution stacks to include FD.io/VPP using the Nirvana-Stack approach Recap from this morning: Towards the Nirvana Stack Integrated while modular approach in OpenDaylight

- Pluggable & Modular Architecture
 - Services decoupled from forwarding technology
 - Comprehensive set of Services
 (leverage NetVirt)
 - Modular and pluggable southbound adapters (leverage GBP)
 - BGP routing stacks: ODL BGP, Quagga, ..
 - Topology service: LISP, VBD, ..
- Model-driven northbound API

Towards L3VPN with a NirvanaStack approach: Key Design Considerations

- Sites interconnected via flexible tunnel technology (MPLS, MPLSoGRE, VXLAN,...) for "north-south" traffic
 - MP-BGP for routing per VRF
- Individual sites to implement fully distributed routing (i.e. DVR)
 - Every forwarder serves as a L3-router
- Converged Network Control solution
 - ODL GroupBasedPolicy + ODL Netvirt
 - Pluggable BGP stack (e.g. ODL BGP) integrated or associated with Controller
 - Support for multiple forwarders (SW + HW), incl. FD.io/VPP

Towards L3VPN with a NirvanaStack approach: Stack Composition

Converged Network Control Solution

- ODL NetVirt Service Control
- ODL BGP stack (inter-DC traffic)
- ODL GBP for forwarder control
- ODL VBD/LISP flow mapping service/.. (intra-DC traffic)

Converged Dataplane Control

- HoneyComb for VPP, OVS control
- Netconf/YANG as Dataplane management protocol
- OPNFV for automated system installation and testing
 - APEX (TripleO) installer, ..

Key Design Principles: North-South Connectivity – BGP controlled

Evolved L3VPN Service - Architecture

Thank you

Key Design Principles: Pure Layer 3 connectivity within a tenant; No Bridges Anywhere

Pure-Layer3

- No broadcasts
- Addresses can be aggregated
- Single end-point addressing scheme

IP Address Assignment – OpenStack HA setup

IP-MAC bindings are controlled through OpenStack, i.e. all DHCP servers are configured the same and manage the same address pool.

VLAN

Key Design Principles: Static or Dynamic Tunneling for Intra-DC (east-west)

- Static tunnel config for intra-DC traffic, e.g. via VBD topology manager
- Dynamic tunnel config for intra-DC traffic: Leverage LISP Flow-Mapping Service for dynamic topology setup within a tenant network

topo	logy setup	within a tenant	network	
•	0, 1			GBP Renderer Manager (flow mapping service)
Host	Num of VM	VM Name	VM PORT IP	VPP renderer
Compute 0	3	VM0-1(Tenant 1)	10.11.12.2/24	
		VM0-2(Tenant 2)	10.11.12.2/24	L3 VNI 2 L3 VNI 1 L3 VNI 1 L3 VNI 2 TAPs in VRF 2 TAP in VRF 1 TAP in VRF 2
		VM0-3(Tenant 2)	10.11.12.3/24	
Compute 1	2	VM1-1 (Tenant 1)	10.11.13.2/24	VM VM VM VM 0-2 0-3 0-1 1-2
		VM1-2(Tenant 2)	10.11.12.4/24	VPP Dynamic L3 Tunnel VPP
				Compute 0 Compute 1

Neutron (networking-odl)

Neutron NorthBound

REST

opensta

LISP for Dynamic Tunneling

Host	Num of VM	VM Name	VM PORT IP				
		VM0-1(Tenant 1)	10.11.12.2/24				
Compute 0	3	VM0-2(Tenant 2)	10.11.12.2/24				
		VM0-3(Tenant 2)	10.11.12.3/24				
Compute 1	2	VM1-1 (Tenant 1)	10.11.13.2/24				
Compute 1		VM1-2 (Tenant 2)	10.11.12.4/24				

