
Clustering in OpenDaylight 

Colin Dixon 
Technical Steering Committee Chair, OpenDaylight 
Distinguished Engineer, Brocade 

Borrowed ideas and content from Jan Medved, Moiz Raja, and Tom Pantelis 



Multi-Protocol SDN Controller Architecture 

Service	
  Adapta-on	
  Layer	
  (SAL)	
  /	
  Core	
  

OpenFlow	
  Netconf	
  
Client	
  

Network	
  Devices	
  

Applica-ons	
  

Network	
  Devices	
  Network	
  Devices	
  

Applica-ons	
  OSS/BSS,	
  External	
  Apps	
  

OVSDB	
   Protocol	
  
Plugin	
  

...	
  

Applica-on	
  Netconf	
  
Server	
   RESTCONF	
   ...	
   Applica-on	
  

Protocol	
  Plugins/Adapters	
  

Controller	
  Core	
  

Applica-ons	
  
REST	
  



	
  
	
  
	
  

Model-­‐Driven	
  SAL	
  
(MD-­‐SAL)	
  

Netconf	
  
Client	
  

Network	
  Devices	
  Network	
  Devices	
  Network	
  Devices	
  

Protocol	
  
Plugin	
  

...	
  Netconf	
  
Server	
   RESTCONF	
   Applica-on	
  Applica-on	
  

REST	
  

Applica-ons	
  Applica-ons	
  OSS/BSS,	
  External	
  Apps	
  

Data	
  
Store	
  

RPCs 

Notifications Namespace 

Data Change 
Notifications 

Software Architecture  

“Kernel”	
  

Apps/Services	
  



Data Store Sharding 
•  Select data 

subtrees 
–  Currently, can 

only pick a 
subtree directly 
under the root 

–  Working on 
subtrees at 
arbitrary levels 

•  Map subtrees 
onto shards 

•  Map shards 
onto nodes 

Data	
  tree	
  root	
  

Shard1.1 Shard1.2 Shard1.3 Shard2.1 ShardN.1 ... 

... 

 
Node1 

 
Node2 

 
NodeM 

Shard	
  Layout	
  Algorithm:	
  
Place	
  	
  shards	
  on	
  M	
  nodes	
  

... 

ShardX.Y:	
  
X:	
  Service	
  X	
  
Y:	
  Shard	
  Y	
  within	
  Service	
  X	
  



Shard Replication 

•  Replication using RAFT [1] 
–  Provides strong consistency 
–  Transactional data access 

•  snapshot reads 
•  snapshot writes 
•  read/write transactions 

–  Tolerates f failures with 2f+1 nodes 
•  3 nodes => 1 failure, 5 => 2, etc. 

•  Leaders handle all writes 
–  Send to followers before committing 

•  Leaders distributed to spread load 

Node 
 

 

 
 

Node 

 
 
Node 

L L 

L L 

L 

F 

F 

F 

F 

F 

F 

F 

F F 

F 

[1] https://raftconsensus.github.io/ 



Strong Consistency 

•  Serializability 
–  Everyone always reads the most recent write. Loosely “everyone is at the same point on 

the same timeline.” 

•  Causal Consistency 
–  Loosely “you won’t see the result of any event without seeing everything that could have 

caused that event.” [Typically in the confines of reads/writes to a single datastore.] 

•  Eventual Consistency 
–  Loosely “everyone will eventually see the same events in some order, but not the 

necessarily the same order.” [Eventual in the same way that your kid will “eventually” 
clean their room.] 



Why strong consistency matters 

•  A flapping port generates events: 
–  port up, port down, port up, port down, port up, port down, … 
–  Is the port up or down? 
–  If they’re not ordered, you have no idea. 

–  …sure, but these are events from a single device, so you can keep them ordered easily 

•  More complex examples 
–  switches (or ports on those switches) attached to different nodes go up and down 
–  If you don’t have ordering, different nodes will now come to different conclusions about 

reachability, paths, etc. 



Why everyone doesn’t use it 

•  Strong consistency can’t work in the face of partitions 
–  If you’re network splits in two, either: 

•  one side stops 
•  you lose strong consistency 

•  Strong consistency requires coordination 
–  Effectively, you need some single entity to order everything 
–  This has performance costs, i.e., a single strongly consistent data store is limited by the 

performance of a single node 

•  Question is: do we start with strong and relax it or start weak and strengthen it? 
–  OpenDaylight has started strong 



Service/Application Model 
•  Logically, each service or application (code) has a primary subtree (YANG 

model) and shard it is associated with (data) 
•  One instance of the code is co-located with each replica of the data 
•  All instances are stateless, all state is stored in the data store 

•  The instance that is co-located with the shard leader handles writes 

 
 

Node1 
S1.1 

S3.1 
S1.2 

S2.9 S3.7 

Service1 

 
 

Node2 
S1.1 

S3.1 
S1.2 

S2.9 S3.7  
 

Node3 
S1.1 

S3.1 
S1.2 

S2.9 S3.7 

Data Store API Data Store API Data Store API 

Service2 Service3 

SX.Y Shard Leader replica SX.Y Shard Follower replica 

Service1 Service3 Service2 Service3 Service2 Service1 



Service/Application Model (cont’d) 
•  Entity Ownership Service allows for related tasks to be co-located 

–  e.g., the tasks related to a given OpenFlow switch should happen where it’s connected 
–  also handles HA/failover, automatic election of a new entity owner 

•  RPCs and Notifications are directed to the entity owner 
–  New cluster-aware data change listeners provide integration into the data store 

 
 

Node1 
S1.1 

S3.1 
S1.2 

S2.9 S3.7 

Service1 

 
 

Node2 
S1.1 

S3.1 
S1.2 

S2.9 S3.7  
 

Node3 
S1.1 

S3.1 
S1.2 

S2.9 S3.7 

Data Store API Data Store API Data Store API 

Service2 Service3 

SX.Y Shard Leader replica SX.Y Shard Follower replica 

Service1 Service3 Service2 Service3 Service2 Service1 



Handling RPCs and Notifications in a Cluster 

•  Data Change Notifications 
–  Flexibly delivered to shard leader, or 

any subset of nodes 

•  YANG-modeled Notifications 
–  Delivered to the node on which they 

were generated 
–  Typically guided to entity owner 

•  Global RPCs 
–  Delivered to node where called 

•  Routed RPCs 
–  Delivered to the node which registered 

to handle them 

Node 
 

 

 
 

Node 

 
 
Node 

L L 

L L 

L 

F 

F 

F 

F 

F 

F 

F 

F F 

F 



Service/Shard Interactions 

1.  Service-x “resolves” a read or write to a subtree/shard 
2.  Reads are sent to the leader 

1.  Working on allowing for local reads 
3.  Writes are send to the leader to be ordered 
4.  Notifications changed data are sent to the shard leader 

1.  and to anyone registered for remote notification 

 
 

Node1 S1.1 
S3.1 

S1.2 

S2.9 S3.7 
 
 

Node2 S1.1 
S3.1 S1.2 

S2.9 S3.7 
 
 

Node3 S1.1 
S3.1 

S1.2 

S2.9 
S3.7 

Data Store API Data Store API Data Store API 

SX.Y Shard Leader replica 

SX.Y Shard Follower replica 

1 “resolve” “read” 
Service1 Service-x 

1 

2.1 
4 

2 

3 
2 3 “write” 

Service-y 

4.1 

“notification” 

“notification” 



Major additions in Beryllium 

•  Entity Ownership Service 
–  EntityOwnershipService 

•  Clustered Data Change Listeners 
–  ClusteredDataChangeListener and ClusteredDataTreeChangeListener 

•  Singificant application/plugin adoption 
–  OVSDB 
–  OpenFlow 
–  NETCONF 
–  Neutron 
–  Etc. 



Work in progress 

•  Dynamic, multi-level sharding 
–  Multi-level, e.g., OpenFlow should be able to say it’s subtrees start at the “switch” node 
–  Dynamic, e.g., an OpenFlow subtree should be moved if the connection moves 

•  Improve performance, scale, stability, etc. as always 
–  Faster, but “stale”, reads from local replica vs. always reading from leader 
–  Pipelined transactions for better cluster write throughput 

•  Whatever else you’re interested in helping with 



Longer term things 

•  Helper code for building common app patterns 
–  run once in the cluster and fail-over if that node goes down 
–  run everywhere and handle things 

•  Different consistency models 
–  Giving people the knob is easy 
–  Dealing with the ramifications is hard 

•  Federated/hierarchical clustering 


