Clustering in OpenDaylight

Colin Dixon

Technical Steering Committee Chair, OpenDaylight Distinguished Engineer, Brocade

Borrowed ideas and content from Jan Medved, Moiz Raja, and Tom Pantelis

Multi-Protocol SDN Controller Architecture

Software Architecture

Data Store Sharding

Shard Replication

- Replication using RAFT [1]
 - Provides strong consistency
 - Transactional data access
 - snapshot reads
 - snapshot writes
 - read/write transactions
 - Tolerates f failures with 2f+1 nodes
 - 3 nodes => 1 failure, 5 => 2, etc.
- Leaders handle all writes
 - Send to followers before committing
- Leaders distributed to spread load

Strong Consistency

- Serializability
 - Everyone always reads the most recent write. Loosely "everyone is at the same point on the same timeline."
- Causal Consistency
 - Loosely "you won't see the result of any event without seeing everything that could have caused that event." [Typically in the confines of reads/writes to a single datastore.]
- Eventual Consistency
 - Loosely "everyone will eventually see the same events in some order, but not the necessarily the same order." [Eventual in the same way that your kid will "eventually" clean their room.]

Why strong consistency matters

- A flapping port generates events:
 - port up, port down, port up, port down, port up, port down, ...
 - Is the port up or down?
 - If they're not ordered, you have no idea.
 - ...sure, but these are events from a single device, so you can keep them ordered easily
- More complex examples
 - switches (or ports on those switches) attached to different nodes go up and down
 - If you don't have ordering, different nodes will now come to different conclusions about reachability, paths, etc.

Why everyone doesn't use it

- Strong consistency can't work in the face of partitions
 - If you're network splits in two, either:
 - one side stops
 - · you lose strong consistency
- Strong consistency requires coordination
 - Effectively, you need some single entity to order everything
 - This has performance costs, i.e., a single strongly consistent data store is limited by the performance of a single node
- Question is: do we start with strong and relax it or start weak and strengthen it?
 - OpenDaylight has started strong

Service/Application Model

- Logically, each service or application (code) has a primary subtree (YANG model) and shard it is associated with (data)
- One instance of the code is co-located with each replica of the data
- All instances are stateless, all state is stored in the data store
- The instance that is co-located with the shard leader handles writes

Service/Application Model (cont'd)

- Entity Ownership Service allows for related tasks to be co-located
 - e.g., the tasks related to a given OpenFlow switch should happen where it's connected
 - also handles HA/failover, automatic election of a new entity owner
- RPCs and Notifications are directed to the entity owner
 - New cluster-aware data change listeners provide integration into the data store

Handling RPCs and Notifications in a Cluster

- Data Change Notifications
 - Flexibly delivered to shard leader, or any subset of nodes
- YANG-modeled Notifications
 - Delivered to the node on which they were generated
 - Typically guided to entity owner
- Global RPCs ←
 - Delivered to node where called
- Routed RPCs
 - Delivered to the node which registered to handle them

Service/Shard Interactions

- 1. Service-x "resolves" a read or write to a subtree/shard
- 2. Reads are sent to the leader
 - 1. Working on allowing for local reads
- 3. Writes are send to the leader to be ordered
- 4. Notifications changed data are sent to the shard leader
 - 1. and to anyone registered for remote notification

Major additions in Beryllium

- Entity Ownership Service
 - EntityOwnershipService
- Clustered Data Change Listeners
 - ClusteredDataChangeListener and ClusteredDataTreeChangeListener
- Singificant application/plugin adoption
 - OVSDB
 - OpenFlow
 - NETCONF
 - Neutron
 - Etc.

Work in progress

- Dynamic, multi-level sharding
 - Multi-level, e.g., OpenFlow should be able to say it's subtrees start at the "switch" node
 - Dynamic, e.g., an OpenFlow subtree should be moved if the connection moves
- Improve performance, scale, stability, etc. as always
 - Faster, but "stale", reads from local replica vs. always reading from leader
 - Pipelined transactions for better cluster write throughput
- Whatever else you're interested in helping with

Longer term things

- Helper code for building common app patterns
 - run once in the cluster and fail-over if that node goes down
 - run everywhere and handle things
- Different consistency models
 - Giving people the knob is easy
 - Dealing with the ramifications is hard
- Federated/hierarchical clustering

