
1

A little about myself since I am a new face to most of you. My name is Shaun
Wackerly and I’ve been an HP Developer for the past 11 years. I developed switch
firmware for 9 years, then transitioned to work in SDN for the past 2 years.

I have two facts to share about myself. First, a few years ago I climbed to within 500
yards of the top of Mt. Everest. Second, I make up facts about myself to impress
others. Let’s move on to the technical stuff.

2

This presentation will define what we mean by “hybrid mode”, how that concept is
supported by the OpenFlow specification, and some of the benefits of supporting the
concept on an SDN controller. Finally, we’ll discuss some of the changes needed to
implement this proposal.

3

The term “hybrid” has been used in multiple ways within the context of SDN, so first
I’d like to clarify what we are proposing when we use the term “hybrid mode”.

When we use the term “OpenFlow-hybrid mode” we are proposing that the
controller use a combination of the OpenFlow pipeline and traditional forwarding
pipeline within a single OpenFlow instance. What this reduces to is the controller
delegating some forwarding decisions to controlled switches, rather than making
those decisions directly itself.

When we use the term “OpenFlow-hybrid mode” we are not referring to a
heterogeneous network which is made up of some OpenFlow switches and some
traditional switches. We are also not referring to a single switch with OpenFlow on
one vlan and traditional forwarding on another vlan.

Hopefully this clarifies what we’re proposing.

4

The key question of hybrid mode is “Who makes the forwarding decision?”. The
OpenFlow-only approach dictates that the SDN controller make the forwarding
decision for every packet on the network. This puts a tremendous amount of
responsibility and complexity into the controller, because it needs to correctly
forward all packet types that the network might be asked to forward.

With our “OpenFlow-hybrid mode” proposal, we are advocating that the controller
only make the forwarding decision for certain packet classes or flows, depending
upon the applications installed. The forwarding decision for the remaining packets on
the network will be made by the traditional network’s forwarding engine. This lets
SDN focus on improving the network experience piece-by-piece, rather than
completely replacing traditional forwarding.

For example, if someone wanted to write an application to inspect DNS packets, the
controller would only need to make the forwarding decision for DNS packets, rather
than all packets on the network. The application and controller wouldn’t need to
know anything about DHCPv6, ARP, or SSH.

5

The OpenFlow specification has supported “OpenFlow-hybrid mode” since version
1.3 of the spec. The spec defines two classifications of switches. OpenFlow-only
switches are those switches which completely rely upon the controller to make all
forwarding decisions. OpenFlow-hybrid switches are those switches which support
OpenFlow, but also support a traditional networking pipeline for protocols like
spanning-tree, OSPF, etc.

The OpenFlow specification also supports “OpenFlow-hybrid mode” via the NORMAL
port. The NORMAL port tells the switch to forward the packet according to the
traditional networking pipeline. By instructing the switch to forward to the NORMAL
port, the controller can delegate the forwarding decision to the switch on a per-flow
or per-class basis, or any other subset of all packets on the network.

It is important to note that when the controller makes use of the NORMAL port, the
controller is still retaining control over the network, because the controller is
instructing the switches how to forward the packet. The controller retains control
without itself making the forwarding decision.

6

There are several benefits to supporting hybrid mode in an SDN controller. First,
hybrid mode reduces the complexity and scope of the forwarding decisions which the
controller makes. Any OpenFlow-hybrid switches we control will have decades of
embedded traditional forwarding logic in their ASICs and firmware. Rather than re-
implementing that logic in the controller, we are proposing that the controller make
use of the embedded traditional forwarding that’s already available. SDN’s value is in
adding new functionality to networks. If all SDN does is centralize the same
forwarding decision, then there is no compelling reason for administrators to move to
SDN.

Another benefit of hybrid mode is the reduced amount of traffic on the control plane.
Since the controller only needs to make the forwarding decision for specific packet
types/flows, there are many fewer PACKET_IN messages being sent to the controller
from the controlled switches. This yields better performance overall for the solution.

Hybrid mode also lowers the barrier to SDN adoption, because it allows
administrators to adopt SDN piece-by-piece, as needed. This gradual migration to
SDN is much easier to adopt than the notion of completely replacing all forwarding
decisions in their traditional network with those made by the SDN controller.

Lastly, hybrid mode scales much more gracefully in terms of the number of OpenFlow
rules it pushes to switches, as you will see on the next slide.

7

This example shows a network with 1 aggregation switch and 3 edge switches. If each
edge switch has 21 hosts connected, there are a total of 63 hosts connected to the
network. If the equivalent of a “pingall” is executed where each host pings all of the
other hosts, there would be 2K rules on each edge switch and over 2600 rules on the
aggregation switch.

It is not scalable for 63 hosts to fill the tables of an aggregation switch with 2600+
flow rules. By comparison, this same setup with hybrid mode would use only 4 rules
on each edge switch and aggregation switch. Those 4 rules will be described on the
next slide. If the number of hosts increases to 1,000 on each edge switch, the
switches will still each only have 4 rules.

8

The changes needed in OpenDaylight to support hybrid mode mainly consist of adjusting the
flow mods (OpenFlow forwarding rules) which we send to switches. We would need to
adjust the rules that are sent initially after a switch connects, and in an ongoing basis in a
running environment.

The controller would send a default rule which tells the switch to forward packets to the
NORMAL port. This rule delegates the forwarding decision to the controlled switches, but it
means that the controller would receive ZERO packet_in messages if no other rules were
pushed. For this reason, we’d put this rule at priority 0 in the last hardware OF table of the
pipeline. Without this rule, the default behavior for OF 1.0 is to steal to the controller and the
default behavior for OF 1.3 is to drop all packets.

Link discovery would need to send a rule which steals all controller-generated link discovery
packets to the controller. This would not include LLDP generated by the switches themselves,
assuming we can distinguish controller-generated packets from switch-generated packets
based upon ethertype (see the Safe Link Discovery presentation for details).

Host discovery would need to send a rule which copies (not steals) all ARP requests and
replies. Host discovery would also need to send a rule which copies (not steals) all DHCP
offers. Since these packets are copied, the controller would not re-inject these packets.

Any path-paving applications would need to be disabled, because the controller would not
want to pave paths except where the controller’s path paving was functionally desirable
(from an end-host perspective) over traditional forwarding.

We also propose that we implement a mechanism in OpenDaylight whereby applications can
register to supply initial OpenFlow rules when a switch connects. These initial rules would be
used to get packets to the application so the application can make the forwarding decision.

9

