
1

This presentation will identify the limitations of the current link discovery methods
and why it is harmful to end-hosts on the network. Then we’ll describe our proposal
for a safer link discovery which behaves more gracefully with respect to end-hosts.
Lastly, we’ll describe some optimizations which might help implement the safer link
discovery even more efficiently.

2

The limitations of the current link discovery center around behaving gracefully toward
end-hosts.

Direct link discovery injects LLDP packets into the network, but those LLDP packets
may cause problems for end-hosts which receive their configuration via LLDP. Some
specific examples of such end-hosts are VoIP phones or wireless access points. If
these devices receive one of the LLDP packets we’ve injected, it may clear their
configuration.

Multi-hop link discovery injects broadcast packets into the network. Those broadcast
packets are received by all hosts on the network. This can cause issues for
underpowered end-hosts if we’re injecting broadcast packets too often, because it
will consume a larger percentage of that host’s CPU.

3

Our proposal for safer link discovery involves changes to the packets injected by
direct link discovery and multi-hop link discovery. We are proposing that all link
discovery packets use an undefined ethertype (for example, the value 0x8999 which
is used by BDDP). Using an undefined ethertype lets us send to any destination MAC
address without the packet being mis-interpreted as a protocol packet sent by the
traditional network.

We propose that direct link discovery use the LLDP link-local MAC (as is done today)
but with an undefined ethertype**. This prevents end-hosts from processing the
injected link discovery packets as LLDP packets, but also restricts the packets from
being forwarded across multiple hops.

We also propose that multi-hop link discovery packets are sent to a non-reserved
multicast MAC (of the form 01xxxx-xxxxxx)**. This will prevent end-hosts from
processing these packets, but will allow them to be forwarded across multiple hops.

** NOTE: These methods have been filed by Hewlett-Packard with the US Patent &
Trademark Office, but Hewlett-Packard has granted license to these patents under
EPL 1.0.

4

Some extra optimizations to link discovery that could accompany this proposal would
be to only probe multi-hop links**. Direct link state can be derived from the
OpenFlow port status change messages (ie: when the port goes down). By only
probing multi-hop links, we reduce the number of packets the controller is injecting
into the controlled network, thus reducing the number of packets the controller
receives from the controlled network.

Another optimization is to not perform link discovery on blocked ports**. This would
only apply to a hybrid environment where a traditional protocol like spanning-tree is
running on ports which the controller controls. We would not want to attempt link
discovery over ports which wouldn’t forward packets, because that would imply we
could use those links for forwarding path calculations.

The final optimization we’re suggesting is a wait period after switch connect before
attempting to initiate link discovery on that device**. When a controller reboots or
when a section of the network has a hiccup, switches will tend to join the controller
in bunches. By waiting a short period after the switch connects, we save work in the
controller by avoiding re-discovery on all switches after each switch connects.

** NOTE: These methods have been filed by Hewlett-Packard with the US Patent &
Trademark Office, but Hewlett-Packard has granted license to these patents under
EPL 1.0.

5

