
OpenDaylight
Current and Future Use Cases

Abhijit Kumbhare
OpenDaylight Technical Steering Committee (TSC) Chair

Principal Architect / System Manager, Ericsson

Agenda
• OpenDaylight Overview and Architecture
• OpenDaylight Use Cases (Partial List)

I. Network Abstraction
II. ONAP
III. Network Virtualization
IV. AI/ML with OpenDaylight
V. ODL in OSS

• OpenDaylight: Getting Involved
• Acknowledgements
• Q & A

OpenDaylight Overview and Architecture

Past Two Days …

• Dinner Discussion with Phil Robb,
VP of Operations, Networking &
orchestration, Linux Foundation

• Topic: our first OpenDaylight Meetings
• November 2012

Nostalgic post by Dave Meyer, first ODL TSC chair on Facebook
about first release Hydrogen in Jan 2014

Realization: We’re a bit old …

• As far as open source communities
go – 6 years is like 60 dog years!!!

• But that’s great!!

• We’ve got old timers

AND

• We’ve always been adding
new developers

OpenDaylight
Project Goals

• Code: To create a robust,
extensible, open source code
base that covers the major
common components required
to build an SDN solution and
create a solid foundation for
Network Functions
Virtualization (NFV)

• Acceptance: To get broad
industry acceptance amongst
vendors and users

• Community: To have a thriving
and growing technical
community contributing to the
code base, using the code in
commercial products, and
adding value above and
around.

OpenDaylight Now
• Mature, Open Governance
• 900 Contributors
• Over 100 deployments
• Multiple use cases
• Dozens of ODL-based solutions
• Mature code base – continued robust

contributions even after 5+ years
• Focus on performance, scale and

extensibility https://opendaylight.biterg.io/

Service Abstraction Layer
• Initial SDN controllers

• Controller application APIs strongly tied to OpenFlow
• Hence applications developed limited to a single southbound protocol

• OpenDaylight Goal
• Decouple the application API from the southbound protocol plugins - be that

Openflow, NETCONF, OVSDB, PCEP, BGP, SNMP, or whatever.

• How to achieve the goal?
• Use an abstraction layer – or what is called by OpenDaylight as Service Abstraction

Layer or SAL

API Driven SAL (AD-SAL)
• Initial attempt at abstraction

• API-Driven SAL, for communicating more
directly with devices, using protocol(s)
associated with the specific API.

• However abstraction difficult to realize in
practice than it was in theory

• AD-SAL became a collection of
independent and discrete APIs, with one
set of APIs for each and every southbound
protocol

• AD-SAL was soon deprecated in OpenDaylight.

SDN Application

AD-SAL

OpenFlow NetConf

Network Devices

Model

So how to achieve true abstraction?
• Alternatives

• Build a better SAL
• Take the existing APIs for the different

plugins, and attempt to come up with an
API abstraction that meets all of their needs

• Use models
• Implement a model layer within the SAL

which has SDN applications dealing with
software models of network devices, rather
than directly with the devices themselves.

• This was the approach taken by
OpenDaylight – to develop a Model Driven
SAL or the MD-SAL built around Yang
models

SDN Application

AD-SAL

OpenFlow NetConf

Network Devices

• Data modeling language that is also the
preferred configuration language for
NETCONF protocol

• Further reads:
• YANG introductory tutorial
• RFC 6020 - YANG - A data modeling

language for NETCONF
• RFC 7950 – The YANG 1.1 Data

Modeling Language

YANG

module model1 {

namespace "urn:model1";
prefix model1;

yang-version 1;

revision 2015-04-06 {
description "Initial revision";

}

grouping A {
list B {

key id;
leaf id {

type uint32;
}
leaf D {

type uint32;
}

}
}

container C {
uses A;

}
}

http://www.slideshare.net/tailfsystems/netconf-yang-tutorial
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950

• Data
• RPCs:

• Perform procedure call with input/output,
without worrying about actual provider for
that procedure

• Notifications:
• Publish one or more notifications to

registered listeners

What can YANG model?

› Applications built defining models
› YANG used for defining models
› Compilation results in the skeleton of

application: model, RESTCONF API, etc.

MD-SAL Application Creation Process

› Elements in red color above is the app
skeleton

› The model implementation (green) is
where you will write code to do whatever
it is that your application or the model
within your application does

• Generates Java code from Yang
• Provides ‘Codecs’ to convert

• Generated Java classes to Document Object
Model (DOM)

• DOM to various formats
• XML
• JSON
• Etc

• ‘Codecs’ make possible automatic:
• RESTCONF
• Netconf
• Other bindings

Yangtools – What does Yangtools do?
Java
code

xml

json

• Consistent Data Transfer Objects
(DTOs) everywhere

• Automated Bindings:
• restconf
• netconf

• Consistent: reduce learning
curve

Yang to Java benefits

• Immutable: to avoid thread
contention

• Improvable – generation can be
improved and all DTOs get those
improvements immediately
system wide

Module model1
Namespace “urn:model1”

MD-SAL
› Model-driven SAL is the kernel of the OpenDaylight controller

› It manages the contracts and state exchanges between every application. It
does this adaptation by managing centralized state

› Takes in the YANG model at runtime and constructs the tree in the data store

C

B
id=1

Leaf D
Val=9

Leaf D
Val=16

Leaf D
Val=2

B
id=2

B
id=3

/restconf/config/model1:C

/restconf/config/model1:C/B/3

Model-Driven Service
Abstraction Layer (MD-SAL)

OpenDaylight Architecture - Simplified View

Notifications

RPCs

YANG Models

Data

App/
Service

App/
Service

Plugin Plugin

Controllers in
a Cluster

An Aspect of the architecture: ODL is a µ-services platform

Model-Driven SAL
(MD-SAL)

Netconf
Client

Network DevicesNetwork DevicesNetwork Devices

Protocol
Plugin

...Netconf
Server RESTCONF ApplicationApplication

REST

ApplicationsApplicationsOSS/BSS, External Apps

Data Store
Messaging

“Kernel”

Microservices

Namespace

YA
NG-m

odeled

interfa
ce

s

YANG-modeled

interfaces

OpenDaylight Platform

Data Plane Elements (Virtual Switches, Physical Devices)

Interfaces & Protocol Plugins

Platform Services

OpenDaylight APIs

Network Services And Applications

Data Store (Config & Operational)

OpenDaylight Architecture - Operational View

Messaging (Notifications / RPCs)

Third Party Applications (Orchestration, Control Plane, UI, etc.)

Protocol
Plugin

Model

API

Application
(Processing)

API

Model

OpenDaylight Platform (Yangtools, MD-SAL)

OpenDaylight Fluorine Release

OVSDBNETCONFLISP PCEP SNMPOpenFlow

OpenDaylight APIs (REST/RESTCONF/NETCONF)

Data Store (Config & Operational) Messaging (Notifications / RPCs)

Orchestration Applications

BGP

Network Services And ApplicationsPlatform Services

• Authentication, Authorization and Accounting
• Data Export Import
• Infrastructure Utilities
• JSON-RPC Extension
• Time Series Data Repository

• Container Orchestration Engine
• Genius Framework
• Honeycomb/Virtual Bridge Domain
• LISP Flow Mapping Service
• NEMO **
• Network Virtualization

SXP Southbound Interfaces &
Protocol Plugins

Controller
Services/Applications

Northbound API

Platform

• Neutron Service
• Service Function Chaining
• Transport PCE*
• Unified Secure Channel Manager **
• User Network Interface Manager

Third Party AppsControl Plane Applications Other Applications (e.g. Vendor UI)

Data Plane Elements
(Virtual Switches, Physical

Device Interfaces)

BMP

* First release for the project
** Not included in Fluorine distribution - separate download

OpenDaylight Architecture: Key Takeaway
• OpenDaylight architecture is amenable to be applied to a

variety of use cases as:
• Not tied to a particular protocol
• Modular, Extensible
• Has built-in tools to simplify application development

OpenDaylight Use Cases (Partial List)

Note
• OpenDaylight architecture has been used in many use cases –

not all covered here

Use Case I

Network Abstraction

Management Interfaces
(Netconf, REST, OVSDB)

White Box
Device

Traditional
Network device

Control Interfaces
(OpenFlow, BGP, PCEP)

OpenDaylight

Orchestration/OSS/Cloud plugin

Network Services API
(Path, Tunnel, L2/L3/L4 Service, Service Assurance, etc)

Provides Network Services
API for Network
Automation
in a Multi Vendor Network

Use Case II

ONAP Project

SDN-C & App-C based on
OpenDaylight code

Use Case III

Network Virtualization

• A set of projects working in tandem to provide network virtualization
(overlay connectivity) inside and between data centers for Cloud SDN use
case

• VxLAN within the data center
• L3 VPN across data centers

• Integration with OpenStack Neutron and Kubernetes (in-progress)
• Uses Open vSwitch and hardware VTEPs (ToR) as the datapath

DC-GW DC-GW

ODL ODL

iBGP
iBGP

OVS

OVS OVS

OVS

MPLSoGRE

MPLSoGRE

VM1 VM3

10.0.0.1

10.0.0.2

VM2

20.0.0.1

VM4

20.0.0.2
200.0.0.2

200.0.0.1 210.0.0.1

210.0.0.2

Prefix 10.0.0.2
Label L1
NH 200.0.0.2

Prefix 10.0.0.1
Label L2
NH 200.0.0.1

Prefix 20.0.0.2
Label L5
NH 210.0.0.2

Prefix 20.0.0.1
Label L6
NH 210.0.0.1

DC-GW – ASBR
(WAN) eBGPVxLAN

VxLAN

MPLSoGRE

MPLSoGRE

Prefix 10.0.0.2
Label L7
NH 230.0.0.1

Prefix 10.0.0.1
Label L8
NH 230.0.0.1

Prefix 20.0.0.2
Label L3
NH 220.0.0.1

Prefix 20.0.0.1
Label L4
NH 220.0.0.1

220.0.0.1 230.0.0.1

NetVirt: L3 VPN & VxLAN Architecture Overview

Network Virtualization: OpenDaylight Components

OF NSFs
ELAN Service

OpenDaylight NB APIs (REST)

OVSDB

Model-Driven service abstraction layer (MD-SAL) (plug-in mgr., capability abstractions, …)

Forwarding
Rules Mgr

ODL Platform

Neutron NB

Network NSFs

FIB Manager

VPN Mgr

NetVirt Services

BGP Protocol Engine
(Quagga)

MP-BGP Interface

HWVTEP

Notification broker

YANG tools

MD-SAL datastore

ODL InfrastructureLegend ODL Netvirt External module

Internal
Transport
Manager ID Manager

Interface
Manager

Lock ManagerLiveness
Manager

GENIUS

ACL service

DHCP Service

NAT Service

IPv6 control service

L2GW Handler

ODL GENIUS

OF 1.3

ODL

Clustering

Inventory
Mgr

Cardinal
(SNMP)

AAA

Misc Services

DAEXIM

QoS Service

One Application / Service

Interconnect Interconnect

A common controller platform

Virtual Network Functions Hardware AppliancesContainerized Network Functions

DCGW Fabric Fabric NMSCNI Neutron

Plugin Plugin BGPVPN EVPN OVSDB

Uniform service
capabilities

Common
dashboard

Simplified
troubleshooting

Simplified
interworking

Reduced training
And validation

Infra Kubernetes (bare metal)

Openstack (containerized)

VNF VNF VNF

CNF CNF CNF

OpenDaylight multi-instance controller

CNF CNF

Tenant K8s
(VM’s)

Tenant K8s
(VM’s)

Tenant K8s
(VM’s)

Kuryr CNI

CNF CNF CNF CNF

Neutron Opendaylight driver

OpenDaylight CNI

Openstack VM’s

Containerized applications on per tenant hosted K8s

CNF on bare metal K8’s
Kuryr CNI Kuryr CNI

OpenDaylight Container Orchestration Engine

• Current Status
• Hybrid scenario:

• Openstack and Kubernetes side by side
• Integration with ODL via Openstack Kuryr
• Supports Multinode environment
• Supports container in a VM scenario

• Baremetal scenario
• Kubernetes only

• Tight integration with ODL NetVirt
• Supports Pod 2 Pod networking L2/L3

• Future Scenarios
• Support for non-OF

southbound
• NetConf

• Testing with L3VPN for multi-
tenant scenarios

• Scale testing & improvement

Use Case IV (future)
AI/ML with OpenDaylight

Smart SDN Controller
• Network status awareness

Ø Rely on time series data
collected from the network

• Traffic Control Policy Change
decision making
Ø Based on the advanced analytics

and machine learning.

• Dynamic change of Control policies
Ø Automatically change the traffic

control policies based on the
analytics results.

Time Series Data
Collection

Advanced Analytics
& Machine Learning

Automated Traffic
Control

Why we need Machine Learning in SDN

• Software Defined Networks needs to be intelligent.
• To be aware of the runtime status of the network.
• To make the right decisions that adjust the policies for traffic

classification and traffic shaping.
• To dynamically change the policies according to the analytics

results.
• AI / MI can be used to establish normalized profiles and dynamically

update the profiles based on a set of predetermined or dynamically
learned rules.

Ø Traffic Control and Routing
Optimization

• Congestion Control
• Traffic Pattern Prediction
• Routing Optimization

ØResource optimization
• Networking resource allocation

optimization
• Cloud resource management

optimization

Use Cases of a smart and intelligent SDN controller

ØSecurity and Anomaly Detection
• DDoS attack detection and mitigation

Ø Troubleshooting and Self-healing

AI/ML Example Use Case – Traffic congestion prediction with automated control

Prediction using Weka leveraging data collected in TSDR

ODL AI/ML framework in the ODL ecosystem

• Enable AI/ML on both historical and
real-time data paths.

• Many use cases would require both
offline and online ML on the time
series data.

• External events could be additional
input for accurate machine learning
results.

• Feed back the results to SDN control
path for automatic traffic steering and
policy placement.

• Well-defined interface among the
components towards future
standardization of advanced analytics
in SDN.

ODL AI/ML framework PoC Architecture
• PoC of both historical

offline machine learning
and real-time online
machine learning
Ø Collect the time series

data
Ø Persist into scalable data

storage
Ø Publish to high

performance data bus

• Integrate with external
machine learning libraries
Ø Spark MLlib
Ø DeepLearning4J

• Collect OpenFlow Stats
and apply machine
learning algorithms
Ø k-means clustering

Use Case V

OpenDaylight in OSS (future)

WAN Transport Orchestrator (WAN-O)
• Based on ACTN (Abstraction of Control of Traffic Engineered

Network) IETF Standard for realizing hierarchical SDN
architecture

• Yang Based (NetConf/RESTCONF) Models

› Coordination of resources across multiple
independent networks and multiple
technology layers to provide end-to-end
services

› Layered operational model:
– Customer: issuing a service request

from catalog
– Service Provider: dealing w/ Customer

and providing the service (may or may
not own the network(s) as such)

– Network Provider: infrastructure
providers owning the physical
network(s) and building the
infrastructure

SDN Hierarchical architecture based on ACTN

CNC - Customer Network
Controller
MDSC - Multi Domain
Service Coordinator
PNC - Provisioning
Network Controller

CMI - CNC-MDSC Interface
MPI - MDSC-PNC Interface
SBI - South Bound Interface

MDSC NBI:
– CMI: CNC to MDSC interface
– YANG based (Netconf/Restconf)
– End to end Virtual Network concept
– Unified end to end topology

MDSC SBI:
– MPI: MDSC to PNC interface
– YANG based (Netconf/Restconf)
– Per domain TE-Tunnels
– White or Black Domain topology

WAN-O as MDSC, interfaces

CNC - Customer Network
Controller
MDSC - Multi Domain Service
Coordinator
PNC - Provisioning Network
Controller

CMI - CNC-MDSC Interface
MPI - MDSC-PNC Interface
SBI - South Bound Interface

SDNc
Operator 1

Service Orchestration (Operator 1)

Transport Network architecture

WAN-O

AP1

SDNc
Operator 1SDNc

Operator 2

SDNc
Operator 3

ASBR

ASBR

ASBR

ASBR
ASBR

ASBR

ASBR

ASBR

AP2

ASBR

Inter domain link White topology domain Black topology domain

AP3

- IETF ACTN MPI
- White topology

- IETF ACTN MPI
- Black topology

WAN Ctrl –
PNC 1

WAN Ctrl –
PNC n

WAN Ctrl –
Microwave

Mini-Link, R6000

….

….

PE

3rd pp IP/Optical

BSS

Service (L2/L3 VPN)

WAN Transport (Intra domain RSVP / SR, inter domain BGP LU LSP)

1

2

CPE

1. Service Orchestration
2. WAN Transport SDN

(Underlay)

END to END service orchestration
Connectivity services

e2e Orchestrator

NFV-OWAN-O Transport
Orchestrator

Service Orchestration

WAN Ctrl –
PNC 1

WAN Ctrl –
PNC n

WAN Ctrl –
Microwave

Mini-Link, R6000

….

….

PE DC
GW

VM

vSwitch OF / Netconf

VIM (Virtual
Infra Mgr)

DC Ctrl
Net Virt

3rd pp IP/Optical
(MP)-BGP

peering Telco DC

ACTN MPI

Service (L2/L3 VPN)

WAN Transport (Intra domain RSVP / SR, inter domain BGP LU LSP)

DC Overlay transport
(VXLAN, GRE)

3
CPE

1. Service Orchestration
2. WAN Transport SDN

(Underlay)
3. Network Virtualization

(Overlay)

Nf-Vi

NFVi

END to END service orchestration
VNF services

1

2

e2e Orchestrator

NFV-O

BSS

Service Orchestration

WAN-O Transport
Orchestrator

OpenDaylight: Getting Involved

Avenues for getting involved

• OpenDaylight Wiki: https://wiki.opendaylight.org
• Mailing Lists:

• Central / Cross Project: https://wiki.opendaylight.org/view/Mailing_Lists
• Complete List including individual projects: https://lists.opendaylight.org/mailman/listinfo

• Chat with developers via IRC: https://wiki.opendaylight.org/view/IRC
• Meetings:

• Technical Steering Committee: https://wiki.opendaylight.org/view/TSC:Meeting
• Technical Work Stream: https://wiki.opendaylight.org/view/Tech_Work_Stream:Main
• Complete List including individual projects: https://wiki.opendaylight.org/view/Meetings

https://wiki.opendaylight.org/
https://wiki.opendaylight.org/view/Mailing_Lists
https://lists.opendaylight.org/mailman/listinfo
https://wiki.opendaylight.org/view/IRC
https://wiki.opendaylight.org/view/TSC:Meeting
https://wiki.opendaylight.org/view/Tech_Work_Stream:Main
https://wiki.opendaylight.org/view/Meetings

Areas to getting involved in
• OpenDaylight Documentation Project
• Project of your interest

• https://wiki.opendaylight.org/view/Project_list
• Code Reviews
• Bug Fixing

• MD-SAL & Clustering (Distributed Systems)
• Experts
• Enthusiasts: Improve your skills in these hot & in-demand area

• Scale & Performance
• Testing
• Architecture Improvements

• Example: Scalable and Robust Data Replication using etcd.

https://wiki.opendaylight.org/view/Project_list

Acknowledgements

• Contributors to slides

• Antonio De Gregorio
• Colin Dixon
• Daniele Ceccarelli
• Dayavanti Kamath
• Francois Lemarchand
• Frederick Kautz

• Jan Medved
• Luis Gomez
• Prem Sankar Gopanan
• Scott Melton
• Srini Seetharaman
• YuLing Chen

• Reference
• https://github.com/BRCDcomm/BVC/wiki/MD-SAL

Q & A

