OPEN
DAYI_IGHT netwo

Micro distribution and agents
ODL Virtual Developer & Testing Forum - Jun 2020

Tejas Nevrekar & Ravi Sankar, Lumina
Networks

Agenda

* Progress

* Modules

* Next Steps

* Goals

* Work

* Use Case Discussion

Progress

* Project

odl-guice - https://wiki.opendaylight.org/display/ODL/ODL +Guice+Project
odl-micro - https://wiki.opendaylight.org/display/ODL/ODL +Micro+Project

* Inflight:
* odl-guice - change to add mycilla-guice to odl-guice, add guice projects from
infrautils
* infrautils - move guice sub-projects out of infrautils
e odl-micro - add seed code from @voburger’s github repo
(https://github.com/vorburger/opendaylight-simple).
* added support for netconf, openflowplugin and ovsdb micro packages
* Import of code pending on getting signed commits from michael, WIP

https://wiki.opendaylight.org/display/ODL/ODL+Guice+Project
https://wiki.opendaylight.org/display/ODL/ODL+Micro+Project
https://github.com/vorburger/opendaylight-simple

Modules

[odl-micro-core

[odl-micro-netconf } [odI-micro-opeanowpIugin} [odl-micro-ovsdb }

odl-micro-core

/ odl-micro-core
[restconf] [aaa]
:{ ext-data

i o) 1
k rgrpc 1 rest ! | msgbus ! , store

-~

Pending

Contains base modules needed by all the
odl-micro distributions

Builds on top of odl-guice and uses google guice
as service dependency mechanism

Uses existing odl components as-is

Adds annotation based wiring of certain blueprint
configuration dependencies

Remove dependencies on mdsal-eos

Add interfaces for grpc, rest and message bus for
inter-service communications

Add mechanism to let services use an external
data store

odl-micro-netconf

-

odl-micro-netconf

~

[netconf-api] [netconf-util] [netconf-client][netconf-config

)

o

[netconf-auth] [netconf-topology] [netconf-notifications]

odl-micro-core

/

Modules needed for netconf connector

Depends on odI-micro-core exposed annotations
for wiring dependencies

Uses odl-micro-core

Regression testing
Pre-mounted devices via XML

odl-micro-openflowplugin

-

o

odl-micro-openflowplugin

[openflowplugin-applications]

[openflowplugin-model][openflowplugin-api]

[openflowplugin-impl] [openflowplugin-ext-impl]

openflowjava

odl-micro-core

~

/

Modules needed for openflowplugin

Includes support for reading the switch connector
configuration

Uses odl-micro-core

Regression testing

odl-micro-ovsdb

-

o

odl-micro-ovsdb

[ovsdb-schema

[

ovsdb-southbound

] [ovsdb-utils]
)

ovsdb-hwvtepsouthbound]

ovsdb-library

odl-micro-core

~

Modules needed for ovsdb

OVSDB project has already moved to
non-blueprint initialization, hence odl-micro
ovsdb has very little code

Uses odl-micro-core

/

Regression testing

Next Steps

Tools to generate micro images for ODL plugins
* Allow a plugin like NETCONF, OPENFLOW, OVSDB to have a micro image bundling
all required dependencies at compile time

* Tools to generate micro images for ODL applications
* Allow an application deployed on ODL to generate its own micro image bundling
all required dependencies at compile time

* Manage transactions with multiple plugin and application odl-micro services to
co-operate

e Support for Spring

Goals

* Firstly build smaller micro-distributions that contain smaller sets of modules suitable for
micro-service deployments:
* odl-micro-openflowplugin
* odl-micro-netconf
* odl-micro-ovsdb

* Eventually expand the scope of odI-micro to cover “Managed” and stable
“Self-Managed” projects, for example:
* NETVIRT, BGPCEP, LISP, etc
* JSON-RPC, TransportPCE

Work - Development, Validation

* Add code for generating the micro-distributions
* This code can be in the project repos or centralized
* We can use exiting System Test (CSIT) to validate the new micro-distribution, a
weekly distribution test would be enough
* Perform Benchmarking tests to compare with existing Karaf/OSGI distribution
* Startup time
e CPU
* Memory footprint
* Micro Backlog - https:/jira.opendaylight.org/browse/ODLMICRO-1
* Guice Backlog - https:/jira.opendaylight.org/browse/ODL GUICE-1

https://jira.opendaylight.org/browse/ODLMICRO-1
https://jira.opendaylight.org/browse/ODLGUICE-1

Use Case Discussion

A. Device Initiated connections

OF-Agent A

openflow:1

OF-Agent B

openflow:2

Agent
requirements

Impacting ODL

services

Solution
Component

0 B

Custom
k8s

e One agent manages only 1 device

e Simplifies assigning device to agent as it is 1:1

e No need for distributed leader election

e Need a agent that starts in seconds, memory
<10M

e New device connection to auto-spawn a new
agent - infra specific solution (e.g. k8s or custom)

e Handle device migration between agents

e Load balancer at southbound

e OpenFlowPlugin Agent

® Passive BGP Agent

e NETCONF call home Agent

B. Controller initiated connections

BGP-Agent A

BGP-Agent B

Custom

e One agent manages only 1 device

e Simplifies assigning device to agent as it is 1:1

e Need a agent that starts in milliseconds, memory
<10M

e On moving a device from one agent to another,
mount the device on the new agent.

e NETCONF, schema context gets duplicated across
agents for the same device type

e Alternatively have multiple agents per device

e Active BGP Agent

e NETCONF Agent

C. Messaging

® Request-Reply - synchronous requests

OF Application Topology

® Publish-Subscribe - asynchronous requests
OF-Agent A OF-Agent A

Request-Repl Publish-Subscribe

e Typical Topology Service
Typical Inventory Service
e BGPRIB

e Custom
® grpc

D. Data Aggregation Service

OF-Agent A

OF-Agent B

Topology

OF-Agent C

OF-Agent D

Custom

e Consumes updates from multiple downstream
agents

® Pub-Sub registration/listener pattern

e Aggregator registers with agents

® Agents publish data

e Same pattern maybe visible in business logic

e Notify changes to upstream components

e Typical Topology Service

e Typical Inventory Service

E. Service Locator

e Resolve service to container address

g OF-AgentA
g BGP-AgentA
g NETCONF-Agent A

> Topology-1

e Framework component

e |stio
e k8s

F. Multi-Service Control Flow

App

o~

Topology

OF-Agent B

openflow:2

Istio

® App requests Topology which requests agent
which sends to device

e Need end-to-end visibility

e Need retries at each leg coupled with timeouts

e Need circuit breaking at each leg

e Typical Topology Service

e Typical Inventory Service

e Higher level ODL Application

Implementation thoughts

OF RPC service OF Statistics service

<\ ‘Messaqe e >

vice Protocol agent
Openflow OVSDB Netconf

openfibw:1 Netcénf:1

Device protocol agent will handle all the
device communication for different protocols
that the device supports. This will not have
any ODL MDSAL and yang tools code.
Spawning a new agent when device connects
will be very fast, as it will have minimal
protocol realization code.

An ODL application that wants to program a
flow/group will be using the OF RPC service.
When a OF Device connects, corresponding
Device Protocol Agent will be started. This
will create a device session and then sends a
message.

This will result in setting up of periodic
statistics collection by the OF Statistics
Service.

OPEN
DAYLIGHT

Thanks

