
TransportPCE

Welcome to TransportPCE

Welcome to TransportPCE
Introduction
Documentation
Presentations
Release Planning
Release Notes

Magnesium
Sodium
Neon
Fluorine

Side-Projects

Introduction
TransportPCE describes an application running on top of the OpenDaylight controller. Its primary function 
is to control an optical transport infrastructure using a non-proprietary South Bound Interface (SBI). It 
may be interconnected with Controllers of different layers (L2, L3 Controller…), a higher layer Controller 
and/or an Orchestrator through non-proprietary Application Programing Interfaces (APIs). Control 
includes the capability to configure the optical equipment, and to provision services according to a 
request coming from a higher layer controller and/or an orchestrator. This capability may rely on the 
controller only or it may be delegated to distributed (standardized) protocols.

It provides alarm/fault and performance monitoring, but this function might be externalized to improve the 
scalability. A Graphical User Interface could be developed in a later step, but is not considered as a 
priority since automated control does not imply user interactions at the transport controller level.

TransportPCE modular architecture is described on the next diagram. Each main function such as 
Topology management, Path Calculation Engine (PCE), Service handler, Renderer _responsible for the 
path configuration through optical equipment_ and Optical Line Management (OLM) is associated with a 
generic block relying on open models, each of them communicating through published APIs.

The controlled transport infrastructure includes a WDM layer and an OTN layer. The WDM layer is built 
from ROADMs with colourless (an add/drop port is not dedicated to one wavelength, it accepts potentially 
any wavelength coming from a tunable transponder), directionless (an added/dropped service can be 
optically switched to any degree, independently of the physical port it is launched through) and possibly 
contention-less (no restriction on the wavelength that can be added or dropped from any port) features. 
The OTN layer is built from transponders, muxponders or switchponders which include OTN switching 
functionalities

The interest of using a controller to provision automatically services strongly relies on its ability to handle 
end to end optical services that spans through the different network domains, potentially equipped with 
equipment coming from different suppliers. Thus, interoperability in the optical layer is a key element to 
get the benefit of automated control.

Initial design of TransportPCE leverages OpenROADM Multi-Source-Agreement (MSA) which defines 
interoperability specifications, consisting of both Optical interoperability and Yang data models. North 
API, interconnecting the Service Handler to higher level applications relies on the Service Model defined 
in the MSA. The Renderer and the OLM are developed to allow configuring OpenROADM devices 
through a southbound Netconf/Yang interface and rely on the MSA’s device model. Topology 
Management is also based on the Network model defined in the MSA

Project Facts

Project Creation Date: May 26 
2016

Primary Contact:  Gilles 
Thouenon <gilles.thouenon@ora

>nge.com

Project Lead:  Gilles Thouenon 
<gilles.thouenon@orange.com>

Committers:  

Guillaume Lambert <guillaume.
lambert@orange.com>
Christophe Betoule <christoph
e.betoule@orange.com>
Balagangadhar Bathula <bb43

>41@att.com
Gilles Thouenon <gilles.
thouenon@orange.com>
Shweta Vachhani <sv111y@att

>.com
Cedric Ollivier <cedric.ollivier@

>orange.com

Mailing List:  transportpce-
dev@lists.opendaylight.org
    Archives: mailing list archives

Meetings: See Community 
 Meetings

Repository: https://git.
opendaylight.org/gerrit/q/project:
transportpce

Jenkins: https://jenkins.
opendaylight.org/releng/view
/transportpce/
 

Open Bugs: https://jira.
opendaylight.org/projects
/TRNSPRTPCE/issues/

http://orange.com
http://orange.com
http://orange.com
http://orange.com
mailto:christophe.betoule@orange.com
mailto:christophe.betoule@orange.com
mailto:bb4341@att.com
mailto:bb4341@att.com
http://orange.com
http://att.com
http://att.com
http://orange.com
https://lists.opendaylight.org/mailman/listinfo/transportpce-dev
https://lists.opendaylight.org/mailman/listinfo/transportpce-dev
https://lists.opendaylight.org/pipermail/transportpce-dev/
https://wiki.opendaylight.org/display/ODL/2022+meeting+minutes
https://wiki.opendaylight.org/display/ODL/2022+meeting+minutes
https://git.opendaylight.org/gerrit/q/project:transportpce
https://git.opendaylight.org/gerrit/q/project:transportpce
https://git.opendaylight.org/gerrit/q/project:transportpce
https://jenkins.opendaylight.org/releng/view/transportpce/
https://jenkins.opendaylight.org/releng/view/transportpce/
https://jenkins.opendaylight.org/releng/view/transportpce/
https://jira.opendaylight.org/projects/TRNSPRTPCE/issues/
https://jira.opendaylight.org/projects/TRNSPRTPCE/issues/
https://jira.opendaylight.org/projects/TRNSPRTPCE/issues/


This choice does not prevent to extend the range of open-specifications supported by the controller, 
when they reach the level of maturity expected to launch heavy developments. Thanks to defined 
modular architecture, some additional modules dedicated to the configuration of other types of equipment 
could be added at a later step. Some others like the PCE or the Topology Management, less tightly 
coupled to the equipment models could be complemented to support the corresponding devices.

Another advantage of TransportPCE modular architecture is that, complementing Yang models defining 
East/West APIs that allows module communications, it could be easily interconnected to external 
applications, or could host specific plugins provided that they support the published APIs, avoiding to 
deploy Controller dedicated to specific equipment in silos.

Documentation
Getting Started for Users  https://docs.opendaylight.org/projects/transportpce/en/latest/user-guide.html?highlight=transportpce

Getting Started for Developers https://docs.opendaylight.org/projects/transportpce/en/latest/developer-guide.html?highlight=transportpce

Presentations
Tech Work Stream Session 2020

Santa Clara Sodium DDF 2019

San Jose Open Networking Summit North America 2019

https://docs.opendaylight.org/projects/transportpce/en/latest/user-guide.html?highlight=transportpce
https://docs.opendaylight.org/projects/transportpce/en/latest/developer-guide.html?highlight=transportpce


Amsterdam neon DDF 2018

Requirements

Release Planning

Release Notes

Magnesium

Introduction of OTN
OTN topology : management of OpenROADM OTN devices including switching pool
 Creation/deletion of OTN services using East/west APIs

path-computation request, otn-service-path
1GE/ODU0, 10GE/ODU2e, ODU4, OTU4 services

OTN rendering function (creation of OTN interfaces and cross connections on devices)
T-API



Implementation of get-T-API-topology allows retrieving an abstracted topology derived from the
openroadm-topology and otn-topology layer (Nodes and access-points in SR0)

Device inventory
Experimental support of device inventory (limited to OpenROADM device 1.2.1 in Mg SR0)

Interconnection to GNPy
An interconnection to GNPy is fully supported, including:

Topology export to GNPy tool and
CE Path validation Tech / impairment aware optical path calculation performed in GNPY according to specific constraints

Sodium

Sodium tPCE release focuses on code refactoring.

Main goal is to get a robust base (fully tested) aligned with latest developments and bug corrections coming from the different contributors
Hardened support of OpenROADM 1.2.1 and 2.2.1 releases
Full support of ietf network topology (RFC 8345 / openROADM Network model 4.1) with consolidated topology building and portmapping 
functions
CI/CD environment allowing smooth integration of contributions avoiding regression (+/-1 voting)

Neon

The main features added in Neon release are the following:

Add support for notification in RPC handling
Extension of the coverage for OpenROADM Service RPC handling: service-reroute, service-restoration, temp-service-create/delete
Impairment aware path calculation in PCE (OSNR calculation)
Management of unidirectional ports in path calculation and path configuration
ROADM to ROADM service creation, for resource reservation when transponders are not present
Introduction of transportpce-service-path 1.6
Device version management (up to release 2.2.1)

Fluorine

Provides most of the bricks defined in the controller architecture for the WDM layer
Junit and functional tests developed for the available modules

Continuous integration eases collaboration between contributors in different countries, entities & companies

Side-Projects

Honeynode: a WDM / OTN device simulator based on FD.io honeycomb and used for TransportPCE functional tests
TransportPCE GUI:
This GUI Provides a collapsed topological view of the OpenROADM network controlled by Transport PCE:

 Backend interaction with TransportPCE Data store (ODL MD-SAL)
Collapsed view based on CLLI, Network and topology layers

As well as a view of provisioned services
Based on Spring boot, Spring Data and Angular

More details and source code available at Orange opensource LFN gitlab space:
https://gitlab.com/Orange-OpenSource/lfn/odl

https://gitlab.com/Orange-OpenSource/lfn/odl

	TransportPCE

