
1.
2.

3.

1.

2.

ODL Micro Project
Name
ODL Micro Project

Repo Name
odlmicro

Description
Run a typical OpenDaylight SDN component such as NETCONF or OpenFlowPlugin without requiring the Apache Karaf OSGi runtime container.

What is the main goal?

Simplifying the ODL deployment
Reducing the time it takes to develop and debug ODL features
Reducing the runtime memory footprint
Reduce the start up time

The project takes forward work done previously under the "Simplifying ODL" led by .Unknown User (vorburger)

For more information see these presentations:

2018.09 at the ODL DDF during ONS Europe in Amsterdam presented by Michael Voburger.
Micro-distributions based on ODL-Simple presented by Tejas Nevrekar
Past Meetings in ODL led by MIchael Voburger

This is required to be a self-managed project.

Scope
The project currently uses Guice as dependency injection (DI) framework, instead the OSGi Blueprint (BP) implementation Apache Aries which is used in
Karaf. This choice was made just because Guice was already used for "Component Tests" in ODL, and infrautils has some useful related helpers.

ODL projects' code is not made to depend on Guice. We simply re-use declarative DI by javax.inject standard @Singleton & @Inject annotations,
which work for both Blueprint (with the blueprint-maven-plugin) as well as Guice.
ODL projects are encouraged to migrate their use of <bean>, <reference> and <service> elements in BP XML to annotations to ease this
integration. When we exceptionally need to "stitch together" objects in a non-trivial fashion (e.g. custom object factories & external configuration),
we migrate BP XML logic into simple *Wiring classes. Wiring classes are not Guice specific, but pure plain old simple Java. We then write small
*Module classes, which are Guice specific, to tie everything together.
This includes support for custom Karaf CLI Commands, based on the ch.vorburger.karaf.simple POC.
We will still support the existing karaf based ODL deployment. As a part of the self-managed project the additional simple-artifacts will be made in
an alternate distribution.
The system integration tests can be reused with a different installation procedure to validate these respective micro-distributions.
The mycilla dependencies will be part of this project.

Open questions
During the development cycle how karaf and odl-simple sit side by side and work? Or we have to first make all changes from BP to POJOs with
annotation and test all together later when everything is done. Any specific input on setting up the development environment ?
Do we create a separate project or perform it as a part of integration?

Start with a separate repository & a self-managed project for that. The project only builds its own code. This is our preferred option.
An ideal solution would have been patching all upstream projects and move all this code to the respective ones like netconf,
openflowplugin etc. This could slow down the prototyping necessary to make this work.
Re-use auto-release by picking code from the upstream and adding our own code there. This also needs its own repository.

How do we handle netvirt/genius like projects which have multiple dependencies?
The primary motive is to move the plugin projects into its own separate containers for scale. However, we need to solve the problem of
communications between these components and other applications like netvirt, genius, etc. This needs a collaborative effort to separate
the application logic from the southbound plugins and develop a communication mechanism between the two either via gRPC or
message bus.
On discussing further, the main intention here is to generate a micro-distribution for netvirt that includes all its dependencies at compile
time. This can be accomplished readily by the current scope of micro-odl as outlined above.

Need to confirm whether there are licensing concerns that we need to consider before bringing this code form github. It is already EPLv1.0.

https://wiki.opendaylight.org/display/~vorburger
https://docs.google.com/presentation/d/14TM9oCn0nLo7RJAhAHglXM4P6oTxsVjJBfFE1wl1qJc
https://wiki.lfnetworking.org/download/attachments/19006711/ODL-Simple%20Mg.pdf?version=1&modificationDate=1569500254000&api=v2
https://docs.google.com/document/d/1-MaazB2rGQt_Ci9tMH8G6GNYfcFsJ9bMmCSsLHRwsqU/edit#heading=h.sz1fvyc05k93

Future Work
Define a solution and implemenation plan for scaling ODL including the solution for communication between containers

Resources Committed (developers committed to working)
Tejas Nevrekar - tejas.nevrekar@gmail.com
Balaji Varaaraju "bvaadar@ "luminanetworks.com
Jamo Luhrsen "jluhrsen@ "luminanetworks.com
Dhiman Ghosh " "dhiman.ghosh@ericsson.com

Initial Committers
Tejas Nevrekar - tejas.nevrekar@gmail.com
Balaji Varaaraju "bvaadar@ "luminanetworks.com
Jamo Luhrsen "jluhrsen@ "luminanetworks.com

Vendor Neutral
Current codebase - https://github.com/vorburger/opendaylight-simple

License is compatible (Eclipse Public License - v 1.0)

Past commits to ODL - https://git.opendaylight.org/gerrit/#/q/topic:simple-dist

Meets Board Policy (including IPR)

mailto:tejas.nevrekar@gmail.com
http://luminanetworks.com
http://luminanetworks.com
mailto:dhiman.ghosh@ericsson.com
mailto:tejas.nevrekar@gmail.com
http://luminanetworks.com
http://luminanetworks.com
https://github.com/vorburger/opendaylight-simple
https://git.opendaylight.org/gerrit/#/q/topic:simple-dist

	ODL Micro Project

