Genius Overview

Contents

- 1 Contents2 Background
 - 2.1 Application Co-existence and Integration Challenges
 - 2.2 Case-by-Case Approach
 - 2.3 Ingress De-multiplexing
- 3 Genius Proposal
 - 3.1 Generic Functions for Multi-Network Service Support
 - 3.2 VPN Service Modules and Inter-relationships
 - 3.3 Interface Manager
 - 3.3.1 Defining Granular interfaces (ODL-interfaces data-model)
 - 3.3.2 Binding Services on an Interface
 - 3.3.3 Service binding dataplane semantics
 - 3.3.4 Making SBI protocol agnostic (South bound renderers)
 - 3.4 Shared Overlay Tunnel Service
 - 3.5 Aliveness Monitor
 - 3.6 ID Manager
 - 3.7 MD-SAL UTIL
 - ° 3.8

Background

Application Co-existence and Integration Challenges

- Partitioning of OpenFlow Resources
 - 1. Every application must have their private flow state space (on every switch)
 - a. Flow tables, group table, meter table, cookies
- Ingress demultiplexing (aka "Table 0 Problem")
 - 1. Packets entering the switch have to be directed to the correct application pipeline
 - 2. Applications cannot simply write ingress flow entries into table 0 without coordination
 - 3. Need smaller granularity than OF port (e.g. VLAN, VNI, etc)? generalized interface concept
 - 4. Co-existence of multiple applications on the same interface
 - 5. Multi-tenancy: Several isolated service instances of the same application
- Integration/Co-operation of different applications
 - 1. Control plane: Service APIs between applications
 - 2. Data plane: Transfer packets between the pipelines of different applications
 - a. Take the use of various packet metadata into account!
 - 3. Each application comes with its own overlay solution

Case-by-Case Approach

- Chosen approach in ODL Beryllium between SFC, GPB and Netvirt
 - 1. Partitioning of OpenFlow Resources
 - a. Design time coordination between different applications
 - 2. Ingress demultiplexing (aka "Table 0 Problem")
 - All application write into table 0, but the flow entries and priorities have been agreed at design time to avoid unwanted interference
 - 3. Integration/Co-operation of different applications
 - a. Control plane: MD-SAL service APIs between applications?
 - b. Data plane: Direct GOTO Table to transfer the packet from one application pipeline to another
- Analysis
 - 1. Can lead to an optimal solution for a group of specific applications
 - 2. Design time coordination needed for every detail
 - 3. Hard-coded dependencies between applications
 - 4. Does not scale to many applications

Ingress De-multiplexing

- Multiple applications writing into table 0 (directly or through an Ingress Manager function)
- Flow conflict detection mechanisms do not allow for any overlap between flows
- Overlap (or rather refinement) should be allowed using priorities to disambiguate:

1. e.g. packets on in_port with certain DMAC to application A, all the rest to application B

• How can a generic Ingress Manager ensure that there is no semantic conflict between the flows if the simple non-overlap criterion is not sufficient?

Genius Proposal

Generic Functions for Multi-Network Service Support

- · Any ODL application can use these to achieve at minimum interference-free co-existence with other applications using the services
- Provide support for co-operation between applications with the minimal amount of design-time coordination and hard-coded dependencies Use APIs to move design-time coordination to run-time
 - Jse APIs to move design-time coordination to run-time
 - 1. Generic infrastructure APIs to avoid direct coupling where possible
 - 2. Direct inter-application (client-server) APIs where necessary for stronger coupling
- Factor out commonly used functions into shared services to avoid duplication & waste of resources, e.g.
 - 1. Overlay Tunnel Manager
 - 2. ID manager
 - 3. MD-SAL Util

VPN Service Modules and Inter-relationships

Interface Manager

- Models generic interfaces as attachment point for applications
 - 1. Supports Hierarchy of: Port, VLAN, VXLAN Trunk, VXLAN VNI, GRE Tunnel, ...
 - 2. Extendible to arbitrary other types of interfaces (virtual link, VPN interface, ...)
 - 3. Interface ID/tag system wide unique identifier in control/data plane.
 - 4. Ingress interface tag stored in metadata

• Handles ingress de-capsulation and de-multiplexing

- 1. Owns table 0 (and possibly additional tables needed for demultiplexing of interfaces)
- Application bind to interfaces through API and register application-specific instructions/actions to be added to the interfaces ingress flow entry (e.g. write metadata, goto table)
- 3. Each bound service is assigned to a separate interface handle, no risk of interference on ingress traffic

South bound protocol agnostic

- 1. Ability to plug in different south bound renderers
- 2. Provides tunnel monitoring services
- 3. Handles egress encapsulation and output, service processing priority

Defining Granular interfaces (ODL-interfaces data-model)

·					
Base params		Vlan-trunk	Vlan-trunk-member	vxlan	gre
Configuration Data					
Name		<unique-name uuid=""></unique-name>	<unique-name uuid=""></unique-name>	<unique- name/uuid></unique- 	<unique-name uuid=""></unique-name>
description					
Туре		12valn	12valn	tunnel	tunnel
enabled		enabled	enabled	enabled	enabled
Parent- refs	Datapath- node-id	<64 bit <u>dpnid</u> >	<64 bit dpnid>	<64 bit dpnid>	<64 bit dpnid>
	Parent- interface	<pre><port_name on="" sbi=""></port_name></pre>	<parent vlan-<br="">trunkIf></parent>	<parent 12vlanIf></parent 	<parent 12vlanIf></parent
		l2vlan-mode =trunk	l2vlan-mode =trunk-member	tunnel-type = vxlan	tunnel-type = gre
		Vlan-Id (N.A.)	Vlan-Id = trunk-vlanId	dpn-id	dpn-id
				<u>Vlan-id</u>	<u>Vlan</u> -id
				source-ip	source-ip
				destination-jp	destination-jp
				gayeway-ip	gayeway-ip
				Monitor-enabled	Monitor-enabled
				Monitor-interval	Monitor-interval
Operational Data					
name		name	name	name	name
type		type	type	type	type
admin-status		admin-status	admin-status	admin-status	admin-status
oper-status		oper-status	oper-status	oper-status	oper-status
List higher-layer-if		List higher-layer-if	List higher-layer-if	List higher-layer-if	List higher-layer-if
List lower-layer-if		List lowerplayer-if	List lowerplayer-if	List lowerplayer-if	List lowerplayer-if
Phys-address		Phys-address	Phys-address	Phys-address	Phys-address
lfindex		Ifindex	Ifindex	Ifindex	Ifindex
Node- <u>cnnector</u> -id		Node- <u>cnnector</u> -id		Node-cnnector-id	Node-cnnector-id
Statistics		Statistics	Statistics	Statistics	Statistics

Binding Services on an Interface

- Service binding data model used to bind a service on a particular interface
- Service module configures following parameters
 - Service-Priority
 - Service-Name
 - Service-Type
 - Service-Info
 - (for service-type openflow-based)
 - Flow-priorityInstruction-list
- Interface Manager maintains a Service dispatcher table to regulate pipeline dynamically between services
- Listens to service-binding changes and accordingly programs the dataplane (Table 0 & Service Dispatcher)

😑 🥅 service-bindings . services-info --- 🥔 key "interface-name" 🖃 🔊 interface-name - J type "string bound-services - 🥔 key "service-priority" - 🥔 min-elements "O" max-elements "2" - Service-priority - Juint8 - service-type E- type "identityref" @ base "service-type-base" - # service-openflow-info description "openflow specific information for services info." 🗄 🥘 dispatcher-table-id Image: i flow-cookie [uses offlow:instruction-list /service-bindings/services-info/bound-services when "service-type = 'service-type-flow-based' ext:augment-identifier "stype-openflow" uses service-openflow-info

Service binding dataplane semantics

Making SBI protocol agnostic (South bound renderers)

- Provide a flexible way to support multiple south bound protocols
- North-bound interface/data-model is decoupled from south bound plugins
- NBI Data change listeners select and interact with appropriate SBI renderers
- New renderers can be added to support new Southbound interfaces/protocols/plugins
- Needs to be re-concilied with Netvirt re-design proposal

Shared Overlay Tunnel Service

- Provides tunnel creation/management services
 - 1. Can be configured to automatically create a homogenous bi-directional tunnel mesh (VxLAN/GRE/others) between agiven group of DPNs 2. API to add new nodes into an existing tunnel mesh
 - 3. API to create uni-directional tunnels from a DPN to an external IP node (CE router) which may not be under SDN control
 - 4. Support for tunnel level redundancy by creating a logical-group-interface, combining more than one tunnel interfaces, and allow for load-
 - balancing or failovers in the group
- API support to control monitoring of tunnel interfaces
- API to get egress-actions and ingress-rules/bindService for specified uni-directional tunnel
- NB Tunnel Up/Down events for services/ user-facing / analytics apps

Aliveness Monitor

- · Provides Controller driven monitoring services for
 - 1. Point-to-point interfaces (VxLAN/GRE)
 - 2. From an interface to destination IP Node
- · Consumes services from ARP, LLDP, Ping Modules
- Generate Aliveness Events
- · Interface manager listens to Aliveness events and updates operational-state of interfaces
- Consumers register for monitoring services specifying monitored interfaces and monitoring parameters
- Uses -
 - 1. Physical topology monitoring
 - 2. monitoring of non-BFD transport tunnels
 - 3. Service Function Monitoring

ID Manager

- Generates and provides unique integer IDs from a pre-configured ID-Pool with configured range to requesting services 1. APIs for C/D of ID-Pool, assignment and lookups of IDs to services
- Dual modes of operation
 - 1. Consistent ID generation consistently provide the same ID for a particular unique key String, Id-value is retained across cluster restarts, and associated with unique key (implemented)
 - 2. Generic ID assignment, no guarantees of consistency or persistence (not implemented)
- · Can be used to assign IDs for and manage resources such as Openflow Tables, Groups, Meters, Service IDs
- Used by Interface Manager for mapping service instances to logical tags in the data plane

MD-SAL UTIL

- · Provides Java interfaces to interact with MD-SAL DS and southbound OF-plugin.
 - 1. APIs for programming Flows & Groups
 - 2. APIs for Data-Store Read/write
 - 3. Generic CDN listener
- Others?