
1.
2.
3.

1.

2.

OpenDaylight Controller:Netconf:Testtool

Netconf testtool
Building testtool
Downloading testtool

Running testtool
Default parameters
Verifying testtool

Testtool help
Supported operations [edit]

Notification support
Connecting testtool with controller karaf distribution

Auto connect for controller
Running testtool and ODL on different machines

Testtool + Controller base karaf distribution
Executing operations via Restconf on a mounted simulated device

Test yang schema
Editing data for simulated device

Known problems
Slow creation of devices on virtual machines
Too many files open
"Namespace urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf is not owned by a module"
"Killed"

Netconf testtool
Netconf testtool (or netconf device simulator) is a tool that:

Simulates 1 or more netconf devices
Is suitable for scale testing
Uses core implementation of netconf server from ODL controller
Generates configuration files for controller so that controller distribution (karaf) can easily connect to all simulated devices
Provides broad configuration options
Supports notifications

Building testtool
Check out latest netconf repository from git
Dive into opendaylight/netconf/tools/netconf-testtool/ folder
Build testtool using command mvn clean install

Downloading testtool
Netconf-testtool is now part of default maven build profile for controller and can be also downloaded from nexus. The executable jar for testtool can be
found at: nexus

Running testtool

After successful build, dive into opendaylight/netconf/tools/netconf-testtool/target/ folder and there is file netconf-testtool-1.0.0-SNAPSHOT-
executable.jar (or if downloaded from nexus just take that jar file)
Execute this file using e.g:

java Xmx1G XX MaxPermSize 256M jar netconf testtool 1.0.0 SNAPSHOT executable.- - : = - - - - - jar

This execution runs the testtool with default for all parameters and you should see this log output from the testtool :

 10
 :
 31
 :
 main INFO o. Starting , SSH simulated devices starting on port 08.206 [] o c n t t NetconfDeviceSimulator - 1 17830

10
 :
 31
 :
 main INFO o. All simulated devices started successfully from port 08.675 [] o c n t t NetconfDeviceSimulator - 17

 to 830 17830

Default parameters

https://git.opendaylight.org/gerrit/#/admin/projects/netconf
https://nexus.opendaylight.org/#nexus-search;gav~org.opendaylight.netconf~netconf-testtool

1.

The default parameters for testtool are:

Use SSH
Run 1 simulated device
Device port is 17830
Yang modules used by device are only: ietf-netconf-monitoring, ietf-yang-types, ietf-inet-types (these modules are required for device in order to
support netconf monitoring and are included in the netconf-testtool)
Connection timeout is set to 30 minutes (quite high, but when testing with 10000 devices it might take some time for all of them to fully establish a
connection)
Debug level is set to false
No distribution is modified to connect automatically to the netconf testtool

Verifying testtool

To verify that the simulated device is up and running, we can try to connect to it using command line ssh tool. Execute this command to connect to the
device:

ssh admin@localhost p s netconf- 17830 -

Just accept the server with yes (if required) and provide any password (Testtool accepts all users with all passwords). You should see the hello message
sent by simulated device.

Testtool help
usage netconf testool : [
 h -] [
 device count DEVICES COUNT -- - -] [
 schemas dir SCHEMAS DIR -- - -] [
 notification file NOTIFICATION FILE -- - -] [
 starting port STARTING PORT-- - -]
 [
 generate config connection timeout GENERATE CONFIG CONNECTION TIMEOUT -- - - - - - -] [
 generate config address GENERATE CONFIG ADDRESS-- - - - -]
 [
 generate configs batch size GENERATE CONFIGS BATCH SIZE -- - - - - - -] [
 distribution folder DISTRO FOLDER -- - -] [
 ssh SSH --] [
 exi EXI --] [
 debug DEBUG--]

Netconf device simulator. info can be found at httpsDetailed :
 //wiki.opendaylight.org/view/OpenDaylight_Controller:Netconf:Testtool#Building_testtool

optional arguments:
 h, help show help message and exit- -- this
 device count DEVICES COUNT-- - -
 of simulated netconf devices to spinNumber
 schemas dir SCHEMAS DIR-- - -
 Directory containing yang schemas to describe simulated devices. schemas e. . Some g netconf
 monitoring and inet types are included by default
 notification file NOTIFICATION FILE-- - -
 Xml file containing notifications that should be sent to clients after create
subscription is called
 starting port STARTING PORT-- - -
 First port simulated device. other device will have previousfor Each +
 port number1
 generate config connection timeout GENERATE CONFIG CONNECTION TIMEOUT-- - - - - - -
 Timeout to be generated in initial config files
 generate config address GENERATE CONFIG ADDRESS-- - - - -
 Address to be placed in generated configs
 generate configs batch size GENERATE CONFIGS BATCH SIZE-- - - - - - -
 of connector configs per generated fileNumber
 distribution folder DISTRO FOLDER-- - -
 Directory where the karaf distribution controller is locatedfor
 ssh SSH Whether to use ssh transport or just pure tcp-- for
 exi EXI Whether to use exi to transport xml content--
 debug DEBUG Whether to use debug log level instead of INFO--

Note: When using SSH for netconf, the testtool is quite resource demanding so more memory has to be reserved for the testtool (run testtool with these
addition arguments e.g. -Xmx1G -XX:MaxPermSize=256M)
Note2: Default starting port is 17830

Supported operations [edit]

Testtool supported operations:

https://wiki-archive.opendaylight.org/index.php?title=OpenDaylight_Controller:Netconf:Testtool&action=edit§ion=8

1.
2.

3.
4.
5.
6.
7.

get-schema - returns yang schemas loaded from user specified directory,
edit-config - always returns OK and stores the xml from the input in a local variable available for get-config and get rpc. Every edit-config replaces
the previous data,
commit - always returns OK, but does not actually commit the data,
get-config - returns local xml stored by edit-config,
get - returns local xml stored by edit-config with netconf-state subtree, but also supports filtering.
(un)lock - returns always ok with no lock guarantee
create-subscription - returns always ok and after the operation is triggered, provided netconf notifications (if any) are fed to the client. No filtering
or stream recognition is supported.

Note: when operation="delete" is present in the payload for edit-config, it will wipe its local store to simulate the removal of data.

Notification support
Testtool supports notifications via the switch. To trigger the notification feed, create-subscription operation has to be invoked. --notification-file
The xml file provided should look like this example file:

 xml version<? =
 encoding'1.0' =
 standalone'UTF-8' =
 'yes'
 ?>
notifications< >

 Notifications are processed in the order they are defined in XML <!-- -->

 Notification that is sent only once right after create subscription is called <!-- - -->
notification< >
 Content of each notification entry must contain the entire notification with event time. <!-- Event
 time can be hardcoded, or generated by testtool XXXX is set as eventtime in XML if this -->
 content< ><!
 CDATA[[
 notification xmlns< =
 "urn:ietf:params:xml:ns:netconf:notification:1.0"
 >
 eventTime< >
 2011
 01 04T12- - :
 30
 :
 46
 eventTime</ >
 random notification xmlns< - =
 "http://www.opendaylight.org/netconf/event:1.0"
 >
 random content single no delay random content< - > </ - >
 random notification</ - >
 notification</ >
]
]
 content></ >
notification</ >

 Repeated Notification that is sent times with second delay inbetween <!-- 5 2 -->

notification< >
 Delay in seconds from previous notification <!-- -->
 delay< >
 2
 delay</ >
 of times notification should be repeated <!-- Number this -->
 times< >
 5
 times</ >
 content< ><!
 CDATA[[
 notification xmlns< =
 "urn:ietf:params:xml:ns:netconf:notification:1.0"
 >
 eventTime XXXX eventTime< > </ >
 random notification xmlns< - =
 "http://www.opendaylight.org/netconf/event:1.0"
 >
 random content scheduled times seconds each random content< - > 5 10 </ - >
 random notification</ - >
 notification</ >
]
]
 content></ >
notification</ >

 Single notification that is sent only once right after the previous notification <!-- -->
notification< >
 delay< >
 2
 delay</ >
 content< ><!
 CDATA[[
 notification xmlns< =
 "urn:ietf:params:xml:ns:netconf:notification:1.0"
 >
 eventTime XXXX eventTime< > </ >
 random notification xmlns< - =
 "http://www.opendaylight.org/netconf/event:1.0"
 >
 random content single with delay random content< - > </ - >
 random notification</ - >
 notification</ >
]
]
 content></ >
notification</ >

notifications</ >

Connecting testtool with controller karaf distribution
This part describes the usage of the testtool with ODL controller. The usage differs slightly between Helium and Lithium.

Testtool + Helium distribution of controller

Auto connect for controller

It is possible to make the controller distribution auto connect to the simulated devices spawned by testtool (so user does not have to post a configuration
for every netconf connector via Restconf). The testtool is able to modify the ODL distribution to auto connect to the simulated devices after feature "odl-
netconf-connector-all" is installed.

When running testtool, issue this command(just point the testool to the distribution) :

java Xmx1G XX MaxPermSize 256M jar netconf testtool 0.3.0 SNAPSHOT executable. device count distribut- - : = - - - - - jar -- - 10 --
ion folder ~ distribution karaf 0.2.0 Helium debug - / - - - / -- true

With the distribution-folder parameter, the testtool will modify the distribution to include configuration for netconf connector to connect to all simulated
devices. So there is no need to spawn netconf connectors via Restconf.

Running testtool and ODL on different machines

The testtool binds by default to 0.0.0.0 so it should be accessible from remote machines. However you need to set the parameter "generate-config-
address" (when using autoconnect) to the address of machine where testtool will be run so ODL can connect. The default value is localhost.

Testtool + Controller base karaf distribution
You can test netconf not only with a downloaded distribution but also with local opendaylight-karaf distribution inside controller project:

Build the whole controller project with latest code
Start the testtool with following parameters(assuming running the testtool from controller/opendaylight/netconf/netconf-testtool):

java jar netconf testtool 0.3.0 SNAPSHOT executable. device count distribution folder distribu- - - - - jar -- - 10 -- - / / /
tion opendaylight karaf target assembly debug / - / / / -- true

Executing operations via Restconf on a mounted simulated device
Simulated devices support basic rpcs for editing their config. This part shows how to edit data for simulated device via Restconf.

Test yang schema

The controller and Restconf assume that the data that can be manipulated for mounted device is described by a yang schema. For demonstration, we will
define a simple yang model:

https://wiki-archive.opendaylight.org/view/TesttoolOnHeliumController

module test {
 yang version - 1
 ;
 namespace "urn:opendaylight:test"
 ;
 prefix "tt"
 ;

 revision "2014-10-17"
 ;

 container cont {

 leaf l {
 type string;
 }
 }
}

Save this schema in file called and store it a directory called test-schemas/ in e.g. home folder. test@2014-10-17.yang

Editing data for simulated device

Start the device with following command:

java Xmx1G XX MaxPermSize 256M jar netconf testtool 0.3.0 SNAPSHOT executable. device count distribut- - : = - - - - - jar -- - 10 --
ion folder ~ distribution karaf 0.2.0 Helium debug schemas dir ~ test schemas- / - - - / -- true -- - / - /

Start helium distribution
Install odl-netconf-connector-ssh feature
Install odl-restconf feature\
Check that you can see config data for simulated device by Executing GET request to

http:
 //localhost:8181/restconf/config/opendaylight-inventory:nodes/node/17830-sim-device/yang-ext:mount/

The data should be just and empty data container
Now execute edit-config request by executing a POST request to:

http:
 //localhost:8181/restconf/config/opendaylight-inventory:nodes/node/17830-sim-device/yang-ext:mount

with headers:

Accept application xml/
Content Type application xml- /

and payload:

 cont xmlns< =
 "urn:opendaylight:test"
 >
 l Content l< > </ >
cont</ >

Check that you can see modified config data for simulated device by Executing GET request to

http:
 //localhost:8181/restconf/config/opendaylight-inventory:nodes/node/17830-sim-device/yang-ext:mount/

Check that you can see the same modified data in operational for simulated device by Executing GET request to

http:
 //localhost:8181/restconf/operational/opendaylight-inventory:nodes/node/17830-sim-device/yang-ext:mount/

Known problems

Slow creation of devices on virtual machines

When testtool seems to take unusually long time to create the devices use this flag when running it:

 Dorg. . .- apache sshd registerBouncyCastle
 =
 false

mailto:test@2014-10-17.yang

Too many files open

When testtool or ODL starts to fail with TooManyFilesOpen exception, you need to increase the limit of open files in your OS. To find out the limit in linux
execute:

ulimit a-

Example sufficient configuration in linux:

core file size blocks, c (-) 0
data seg size kbytes, d unlimited(-)
scheduling priority (
 e -) 0
file size blocks, f unlimited(-)
pending signals (
 i -) 63338
max locked memory kbytes, l (-) 64
max memory size kbytes, m unlimited(-)
open files (
 n -) 500000
pipe size (
 bytes, p 512 -) 8
POSIX message queues bytes, q (-) 819200
real time priority - (
 r -) 0
stack size kbytes, s (-) 8192
cpu time seconds, t unlimited(-)
max user processes (
 u -) 63338
virtual memory kbytes, v unlimited(-)
file locks (
 x unlimited-)

To set these limits edit file: /etc/security/limits.conf e.g:

 hard nofile * 500000
 soft nofile * 500000
root hard nofile 500000
root soft nofile 500000

"Namespace is not urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf
owned by a module"

error parsing input: Namespace is not owned by a module The netconf-node- urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf
topology model could be missing. Fix by restarting ODL

"Killed"

The testtool might end unexpectedly with a simple message: "Killed". This means that the OS killed the tool due to too much memory consumed or too
many threads spawned. To find out the reason on linux you can use following command:

dmesg egrep i B100 | - - 'killed process'

Also take a look at this file: /proc/sys/kernel/threads-max. It limits the number of threads spawned by a process. Sufficient(but probably much more than
enough) value is e.g. 126676

urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf
urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf

	OpenDaylight Controller:Netconf:Testtool

