
Table Type Patterns Proposal

Name
Status
Repo Name
Description

Table Type Patterns
Plans
Hardware Targets

Software Targets
References

Scope
Resources Committed (developers committed to working)
Initial Committers
Vendor Neutral
Meets Board Policy (including IPR)

Name

Table Type Patterns

Status

This project proposal was approved for incubation on April 17, 2014: https://meetings.opendaylight.org/opendaylight-meeting/2014/opendaylight-meeting.
2014-04-17-16.56.html

Subsequently, the ONF chose to retitle is soon-to-be-published specification from "Negotiable Datapath Models" to "Table Type Patterns" (TTPs are the 
first instance of NDMs). Related to that title change, the project team has requested that the OpenDaylight project name change to " " Table Type Patterns 
as well. The meeting notes above include reference to the TTP as well, and we can leave other breadcrumbs. Formal approval of this name change will be 
requested in upcoming TSC meeting(s).

For now, the project page will be created using TTP, with a redirect at and . (My boldness  Negotiable Datapath Models   Negotiable Datapath Models:Main
here derives from . Steer me right if I'm out of line.) Be bold

Repo Name

ndm

Description

Negotiable Datapath Models (NDMs) are the (upcoming) first tangible output from the ONF's Forwarding Abstractions Working Group (FAWG). The goal is 
to allow for an OpenFlow controller and OpenFlow switch to agree on a set of functionality to help manage the increased diversity made possible with 
OpenFlow versions 1.1+.

While the current focus of NDMs inside the ONF is on OpenFlow, these abstractions are likely to be more broadly useful and inside OpenDaylight they 
could expand to be used for other protocols.

Table Type Patterns

The first incarnation of NDMs is Table Type Patterns which are, at a high level, an extension of OpenFlow table features messages that are used to 
describe subsets of OpenFlow 1.3+ functionality.

Plans

In the long run, we’d like for a TTP (or other NDM) to be negotiated as part of connecting to the switch or out of band, e.g., via OFCONFIG or OVSDB. The 
TTP would then either be self-describing or provide a link (either explicitly via a URI or implicitly by looking up the name in a naming-authority database) to 
a description of what features the TTP provides. For example something saying it had 3 tables: one flexible OF1.0-style table, one L2 forwarding table and 
one L3 forwarding table.

Until vendors start to support this, the most useful thing seems to be supporting something we’d like to call “empirical TTPs”. The general idea is that as 
OpenFlow 1.3 hardware starts to be available, we will need a way to understand what capabilities it supports and what capabilities it doesn’t. There are 
just too many variables and optional features to be able to discover this at runtime and do anything with the information.

To do this in a sane manner, we will need to maintain a (static, offline) database of devices and their features. For example, knowing that Huawei 8500 
series support only a single table with OF1.0-style features. (I’m making the vendor and model number up, not basing it on any real system.) I also want to 
note the the description of supported features need not be complete or static over time. We can start off by describing some of the features we’ve found 
that work and then move on from there adding more “known good” features as we discover/need them.

https://meetings.opendaylight.org/opendaylight-meeting/2014/opendaylight-meeting.2014-04-17-16.56.html
https://meetings.opendaylight.org/opendaylight-meeting/2014/opendaylight-meeting.2014-04-17-16.56.html
https://wiki-archive.opendaylight.org/view/Table_Type_Patterns:Main
https://wiki-archive.opendaylight.org/view/Negotiable_Datapath_Models
https://wiki-archive.opendaylight.org/view/Negotiable_Datapath_Models:Main
http://en.wikipedia.org/wiki/Wikipedia:Be_bold


Fortunately, TTPs provide a relatively straightforward way to do this. They allow for an unambiguous description of the features a switch supports. If we 
have tooling in OpenDaylight to read and parse these TTPs we can have semi-progammatic support for OpenFlow 1.3 hardware in a way that makes it 
actually usable. First we start to store the features of switches in the offline database and then we fake the negotiation by reading the vendor ID and 
whatever else we need to identify the switch (Do we have to fall back to just Vendor + DPID or is there other info we can use?) and then just inferring the 
right TTP.

Along these lines, the OpenDaylight NDM project/effort would like to start by working on basic tooling to read, parse and write TTPs as well as maintain a 
database of the TTPs keyed off of vendors and device models (with hopefully enough information to suss that out during OF1.3 switch connection). Once 
we have this, hopefully we can start to build up some information around current OpenFlow 1.3 devices and make those much more useful.

Also, as we do this, we can start to make tools that let us get real things done with OpenFlow 1.3 hardware in a non-device specific way. For example, 
writing test suites that profile OF1.3 switches and produce a TTP by testing their features directly. Also, we’d like to be able to do things like discover 
isomorphisms between TTPs and/or find the commonality between multiple TTPs.

Really, this is all just in the spirit of enabling developers to take as much advantage of OpenFlow 1.3 hardware as we can in the least device-specific 
manner we can as fast as we can.

Hardware Targets

Broadcom OF-DPA: Provides true OpenFlow 1.3 multiple table support with binaries and source code to work on most recent Broadcom-based 
switches assuming firmware access.
Intel Flexpipe: ???
IBM Switches: Have support for L2 forwarding in OF1.0 and adds MPLS support in OF1.3.

Software Targets

Glue code that shouldn't have to do much to put software switches into the appropriate mode. Mostly, this involves finding currently unused table numbers 
and allocating them to supporting a profile. Also preventing existing apps from violating the notion of how those tables should work established with NDMs.

References

Curt and Colin's OpenDaylight Summit Talk
Slides from the OpenDaylight Summit Talk
Curt's slides from US Ignite
Source, binaries and documentation for Broadcom's OF-DPA

Scope

This proposal provides a way (in the short run) to specify subsets of the functionality provided by OpenFlow 1.3

Resources Committed (developers committed to working)

Colin Dixon
Curt Beckmann
Joe Tardo
Abhijit Kumbhare

Initial Committers

Colin Dixon
Curt Beckmann

Vendor Neutral

Since this is a vendor-neutral implementation of tools for using a vendor-neutral specification, this should not be an issue.

Meets Board Policy (including IPR)

TBD. Minimal code currently exists which should ease IPR.

http://www.youtube.com/watch?v=bcaBS6w_k_o
http://events.linuxfoundation.org/sites/events/files/slides/TTPs%20and%20NBIs%20for%20ods2014-final_0.pdf
http://www.slideshare.net/US-Ignite/interoperable-open-flow-with-nd-ms-and-ttpsbeckmann
https://github.com/Broadcom-Switch/of-dpa

	Table Type Patterns Proposal

