
OCP Plugin: Boron: System Test Report

Contents

Feature name
Description
Enabling The Feature
Using The Feature
Incompatibilities
Feature Pro-activeness
How to test
Performance/Scalability Concerns

Additional Requirements To Meet Test Requirements Of A Boron Stable Feature

Feature name
The OCP Plugin project has two top level karaf features, and , which contain the following sub-features odl-ocpplugin-all   odl-ocpjava-all

odl-ocpplugin-southbound
odl-ocpplugin-app-ocp-service
odl-ocpjava-protocol

Description

The OCP service (odl-ocpplugin-app-ocp-service), together with the OCP southbound (odl-ocpplugin-southbound) and OCP protocol library (odl-ocpjava-
protocol), provides the ODL controller with basic OCP v4.1.1 functionality:

OCP-capable radio heads connection
OCP inventory: radio heads
OCP elementary functions: device management, config management, object lifecycle, object state management, fault management
OCP indication message processing

For more information please visit main wiki page OCP_Plugin:Main

Enabling The Feature

Make sure the following prerequisite features are installed beforehand.

feature:install odl-restconf odl-l2switch-switch

Then install the odl-ocpplugin-all feature which includes the odl-ocpplugin-southbound and odl-ocpplugin-app-ocp-service features. Note that the odl-
ocpjava-all feature will be installed automatically as the odl-ocpplugin-southbound feature is dependent on the odl-ocpjava-protocol feature.

feature:install odl-ocpplugin-all

After all required features are installed, use following command from karaf console to check and make sure features are correctly installed and initialized.

feature:list | grep ocp 

Using The Feature

Currently there are two ways to interact with OCP service: one is via RESTCONF (programmatic) and the other is using DLUX web interface (manual).

Information on how to use the feature is available in OCP_Plugin:Main#Installation

Incompatibilities

OCP service only interacts with OCP-capable radio heads and therefore it does not show incompatibilities with other plugins.

Feature Pro-activeness

OCP Plugin uses TCP port 1033, on which it listens for connection requests from radio heads. The connection established between the radio head and 
controller (ocpplugin) is for transmission of OCP request/response/indication messages.

Based on the OCP specification, OCP service will perform the alignment procedure against a newly connected radio head upon connection establishment. 
After that, with the exception of periodic health check, OCP service does not send any request to the radio head unless you program it through NBI.

https://wiki-archive.opendaylight.org/view/OCP_Plugin:Main
https://wiki-archive.opendaylight.org/view/OCP_Plugin:Main#Installation


How to test

There is an OCP service system test suite running in CI:

https://jenkins.opendaylight.org/releng/view/CSIT-Jobs/job/ocpplugin-csit-1node-get-only-boron/
https://jenkins.opendaylight.org/releng/view/CSIT-Jobs/job/ocpplugin-csit-1node-get-all-boron/
https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-verify-1node-get/

The test brings a number of OCP agents representing fake radio heads, using the simple OCP agent that can be found in the ocpplugin repository, and 
verifies:

Radio head connectivity
Access to radio head configuration
Scalability
Clustering support

Test Case 
Description

Pre-conditions or 
Pre-requisites

Test Procedure Expected Results

Radio head 
connectivity

Fresh installation of the 
controller, then

Install 
prerequisite 
features
Install odl-
ocpjava-all
Install odl-
ocpplugin-all

Launch and connect a fake radio 
head to the controller
View the radio head's corresponding 
inventory node via REST API
Verify REST API succeeded

GET <controller_ip_addr>:8181/restconf/operational/opendaylight- http://
inventory:nodes/node/ocp:TST-1 REST response should succeed with 
status of 200 OK

Access to 
radio head 
configuration

Fresh installation of the 
controller, then

Install 
prerequisite 
features
Install odl-
ocpjava-all
Install odl-
ocpplugin-all

Launch and connect a fake radio 
head to the controller
Read RE:0 object from the radio 
head's resource model via REST API
Verify REST API succeeded

POST <controller_ip_addr>:8181/restconf/operations/ocp-service: http://
get-param-nb REST response should succeed with status of 200 OK and 
result code of SUCCESS

Scalability Fresh installation of the 
controller, then

Install 
prerequisite 
features
Install odl-
ocpjava-all
Install odl-
ocpplugin-all

Launch and connect 200 fake radio 
heads to the controller
View the last radio head's 
corresponding inventory node via 
REST API
Verify REST API succeeded
Read the last radio head's resource 
model via REST API
Verify REST API succeeded

GET <controller_ip_addr>:8181/restconf/operational/opendaylight- http://
inventory:nodes/node/ocp:TST-200 REST response should succeed with 
status of 200 OK
GET <controller_ip_addr>:8181/restconf/config/ocp-resourcemodel: http://
resourceModel/RadioHead/ocp:TST-200 REST response should 
succeed with status of 200 OK

Clustering 
support

Fresh installation of the 
3-node clustered 
controller, then

Install 
prerequisite 
features
Install odl-
ocpjava-all
Install odl-
ocpplugin-all

Launch and connect a fake radio 
head (radio head #1) to the master 
node of the controller
Launch and connect a fake radio 
head (radio head #2) to the first slave 
node of the controller
Launch and connect a fake radio 
head (radio head #3) to the second 
slave node of the controller
Read RE:0 object from the resource 
model of radio head #1 via REST API
Verify REST API succeeded
Read RE:0 object from the resource 
model of radio head #2 via REST API
Verify REST API succeeded
Read RE:0 object from the resource 
model of radio head #3 via REST API
Verify REST API succeeded

All POST <controller_ip_addr>:8181/restconf/operations/ocp- http://
service:get-param-nb REST responses should succeed with status of 
200 OK and result code of SUCCESS

Performance/Scalability Concerns

Performance and scalability have been taken into account when designing OCP Plugin, and we address them by leveraging the software architecture of 
OpenFlow Plugin.

https://jenkins.opendaylight.org/releng/view/CSIT-Jobs/job/ocpplugin-csit-1node-get-only-boron/
https://jenkins.opendaylight.org/releng/view/CSIT-Jobs/job/ocpplugin-csit-1node-get-all-boron/
https://jenkins.opendaylight.org/releng/view/ocpplugin/job/ocpplugin-csit-verify-1node-get/
https://wiki.opendaylight.org/http:
https://wiki.opendaylight.org/http:
https://wiki.opendaylight.org/http:
https://wiki.opendaylight.org/http:
https://wiki.opendaylight.org/http:


Additional Requirements To Meet Test Requirements Of A Boron Stable 
Feature
stable feature definition

Demonstrate (preferably via CSIT robot tests):
that the feature works in conjunction with a 3-node cluster using the clustered data store
that the feature functions appropriately over a significant duration (days/weeks)

CSIT jobs should:
Have a 100% pass rate. If not, then clearly document all failures and their associated unresolved bug and explain why it will not be 
resolved for the release
not show any unexplained regressions or failures.

Scale and performance limits will need to be available for your feature at the time of release. If there are limits already available, or CSIT jobs tracking 
these numbers, include them here. Some examples would be:

openflowplugin can support 200 connected switches
aaa can validate 10k tokens per second

https://wiki-archive.opendaylight.org/view/Simultaneous_Release:Boron_Release_Plan#Stable_and_Extended_Features

	OCP Plugin: Boron: System Test Report

