
FaaS: Beryllium: Release Plan
Contents

Introduction
API

Management API
Core API

Port API
Layer 2 API
Layer 3 API
Tunnel API
ACL API

Resource Management API
Release Deliverables
Release Milestones
Externally Consumable APIs
Expected Dependencies on Other Projects
Expected Incompatibilities with Other Projects
Compatibility with Previous Releases

Removed APIs and/or Functionality
Deprecated APIs and/or Functionality
Changed APIs and/or Functionality

Themes and Priorities
Requests from Other Projects
Test Tools Requirements
Other

Introduction

During the Beryllium code sprint we plan to define the Fabric as a service API and implement these APIs through a Fabric Manager module and a OVS
based VXLAN fabric. Those APIs intend to become a common abstraction layer between the applications and underneath network and abstract away the
complexity of traditonal southbound API such as CLI, netconf, OVSDB, Openflow etc... To achieve the goal (becoming a common abstractio layer), we will
integrate with GBP project and deliver a GBP renderer to demonstrate its capability in Be release.

API

FaaS feature or bundle exposes the following services to its external consumers. The consumers could be applications outside of ODL or modules within
ODL. , those APIs are limited to be used . As FaaS matures, those service will be exposed to be part of ODL In Beryllium release within ODL only
northbound.

Status - tentative
As the project progress, the APIs below are subject to change or removed or not implemented for this release according to our integration work with GBP
or any internal projects for this release. They are not for ODL northbound used just yet.

Management API

Management API defines housekeeping interfaces to abstract, provision fabric objects as well as its life cycle management from initiation to decommission.

A fabric is an abstraction of a well configured underlay physical network or a portion of a physical network, which internally consists of a list of network
nodes,a topology formed by those nodes as well as well configured underlay network ready for further virutulization.

Usally Those nodes supports the same l2 or l3 data path virtualization technology, such as VLAN, TRILL or VXLAN and share a underlay control plane.
The control plane could be existing protocol running distributedly on those nodes or centralized provided by the fabric object within the controller.

The management API includes the following functions.

To compose a fabric object based on a set of physical nodes

 Fabric fabric = fabricManager.composeFabric(type, name, topology, typeSpecificOptions)

To query a Fabric’s internal topology, physical port list, capability and resource

 ResourceDescriptor rd = fabric.queryResource(fabricID);

Add a node to an existing fabric object.

 fabric.addNode(Node node)

Remove a node from an existing fabric object

 fabric.removeNode(Node node)

1.
2.

1.
2.

Add a link to a fabric topology.

 fabric.addLink(Link link)

Remove a link from a fabric Topology.

 fabric.removeLink(linkID)

Decompose a Fabric

 fm.decomposeFabric(fabricID)

Core API

Core API defines the core services provided by a fabric object which are used to describe a logical network according to users’ requirements. It is
implemented by Fabric object and includes operations for the following key FaaS objects.

Logical Port

A logical port is a logical counterpart of a physical port and provides layer 2 access point to a logical switch or a logical router. Depends on the variety of
mappings to a physical port and a set of physical ports, it could be one of the following types

A physical port + logical ID
Bundling port + logical id

A bundling port is a object representing a port bundling of a set of physical ports which provides load balancing and HA merits

L3 Interface

L3 Interface represents a layer 3 access point to a logical router. It could be

Unicast L3 interface
Multicast L3 interface

Also it could be either public or private.

Tunnel *

Tunnel object represents a physical link abstraction. it provides Layer 1 connectivity, packet comes in one end of the tunnel and goes out from the other
end without changed.

Logical Switch

Logical Switch is an Layer 2 connectivity abstraction. It supports broadcast, could bind to a subnet, a gateway as well as DHCP services.

Logical Router

Logical Switch is an Layer 3 connectivity abstraction.

ACL(Access Control List)

ACL provides stateless flow control. It consists of a set of ACLEntries, each entry includes a pair of Classifier and Action

Port API

To create a logical Port .

 LogicalPort lport = fabric.createLogicalPort(phyiscalportID, logicalID);

To remove a logical Port .

 fabric.removeLogicalPort(lportID);

To query logical port ‘s stats.

 PortStatistics stats = lport.getStatistics()

To create a l3 Interface.

 L3Interface l3if = fabric.createL3Interface(IPAddress, public | private)

To bind a l3 interface to a logical port.

 l3If.bindLP(lpID);

To bind a l3 interface to a logical switch.

 l3if.bindLSW(lsw);

To query a l3 interface’s stats.

 L3Statistics stats = L3if.getStatistics()

Layer 2 API

Create a Logical Switch

 LogicalSwitch lsw = fabric.createLSW(name, resourceID, …)

Remove a logical Switch

 fabric.removeLSW(lswID)

Attach/remove a logical port to a logical switch

 lsw.attachLogicalPort(lp);

Dettach a logical port from a logical switch

 lsw.dettachLogicalPort(lp);

Query LSW stats

 LSWStats stats = lsw.getStatistics();

Query LSW Configuration attributes such as port list etc…

 lsw.getAttributes();

Layer 3 API

To create a Logical Router object

 LogicalRouter lr = fabric.createLR(name);

To remove a Logical Router object

 fabric.deleteLR(lr);

To query a Logical Router’s routing table and its interface list.

 Route[] rs = fabric.lr.getRoutes();
 L3Interfaces[] rs = fabric.lr.getInterfaces ();

To attach/dettach L3Interfaces to a Logical Router

 lr.attachInterface(l3Interface);

To update Logical Router’s Routing Table

 lr.addRoute(lr, Route);
 lr.deleteRoute(lr, Route);

To Check a logical router’s status

 lr.ping()
 lr.traceroute()

Tunnel API

Create a tunnel between two logical ports

 Tunnel tunnel = fabric.createTunel(logicalPortPeer, tunnelID, tunnel specific options);

Remove a tunnel

 fabric.removeTunel(tunnelID);

Query a tunnel attributes

 tunnel.getAttributes();

Check a tunnel status

 tunnel.ping()
 tunnel.traceroute()

ACL API

ACL APIs allows applications to enforce stateless ACL control over logical ports and layer 3 interfaces. Its functionality includes

add an ACL entry on a logical Port or a L3 Interface

 ACLEntry entry = logicalPort.addACL(classifier, action, location);
 ACLEntry entry = L3Interface.addACL(classifier, action, location);

Delete an ACL entry on logical Port or L3 Interface

 logicalPort.deleteACL(entryID)
 l3Interface.deleteACL(entryID)

Query ACLs on a logical Port or a L3 Interface

 logicalPort.getACL()
 l3Interface.getACL()

Resource Management API

Resource Managment API aims to support multi-tenancy. It does so by allocating and managing network resource within a Fabric including topology
restrictions, ports, logical network id allocation and bandwidth into smaller fabric objects. The functionality includes

To slice a fabric into smaller/children fabrics based on resource constraints

 Fabric smallFabric = resourceManager.sliceFabric(fabric, resourceConstraint);

To remove child fabric

 resoureManager.removeSlice(smallFabricID);

To define a tenant physical network based on a set of fabrics assigned to the tenant

 resourceManager.assign(tenantID, Fabric[]);

To query a tenant physical resource

 TopologyGetTopologyByTenantID(tenantID) // a fabric based abstacted topology object.

Release Deliverables

Name Description

Fabric
Manager

Fabric CRUD, network resource management, fabric based topology build as well as Rendering tenant logical network into services
provided by fabrics

OVS Fabric a fabric implementation based on OVS/VXLAN encapsulation

Release Milestones

Milestone Offset 2
Date

Deliverables

M1 8/6/2015
Name Status Description

Intent to participate Done Intent to participate in Beryllium Simultaneous Release

Candidate Release Plan Done Candidate Release Plan

M2 9/3/2015
Name Status Description

Release Plan Done Final Release Plan

Project Checklist Done Project Checklist completed

FaaS Service definition Done The services provided by FaaS

Project acknowledged Done Project acknowledged from all projects that it depends on.

M3 10/15/2015
Name Status Description

Feature Freeze Done Final list of externally consumable APIs defined and documented

Karaf Features defined Done Karaf Features defined

Integration & System
Test

Done Simple system test on a karaf distribution with the project's recommended
features installed

M4 11/12/2015
Name Status Description

API Freeze Fabric Manager/OVS fabric code complete

Datastore update logical network to faas mapping stored

Integration &
System Test

Run a simple system test on a karaf distribution with the project's recommended
features installed on Code Merge

M5 12/17/2015
Name Status Description

Code Freeze Code implementation to be completed working with GBP renderer.

Documentation Update wiki documentation to reflect changes/new features.

Feature Test Run system test for a feature.

RC0 TBD
Name Status Description

Deliverable Name Deliverable Description

RC1 TBD
Name Status Description

Deliverable Name Deliverable Description

RC2 TBD
Name Status Description

Release Review Release Review Description

Deliverable Name Deliverable Description

Formal
Release

TBD
Name Status Description

Deliverable Name Deliverable Description

Externally Consumable APIs

Fabric as a Service API

Expected Dependencies on Other Projects

controller
odlparent
yangtools
md-sal
OVSDB-plugin
openflow-plugin

Expected Incompatibilities with Other Projects

No incompatibilities with other projects

Compatibility with Previous Releases

Removed APIs and/or Functionality

New Project. N/A

Deprecated APIs and/or Functionality

No deprecated APIs or functionality.

Changed APIs and/or Functionality

No APIs or functionality will be removed.

Themes and Priorities

Requests from Other Projects

A faas Based GBP renderer will be done within GBP projects, FaaS API definition needs to factor in GBP requirements

Test Tools Requirements

Java unit and integration tests

Other

	FaaS: Beryllium: Release Plan

