
ALTO: Beryllium: Release Plan
Contents

Introduction
Release Deliverables
Release Milestones
Externally Consumable APIs
Expected Dependencies on Other Projects
Expected Incompatibilities with Other Projects
Compatibility with Previous Releases

Removed APIs and/or Functionality
Deprecated APIs and/or Functionality
Changed APIs and/or Functionality

Themes and Priorities
Requests from Other Projects

Example Request
Test Tools Requirements
Other

Introduction

In the Beryllium release, the ALTO project is planning to accomplish the following tasks:

Migrate all AD-SAL components to MD-SAL
Rewrite the YANG model for ALTO services
Introduce a new framework for Endpoint Cost Service
Flexible service management and dynamic IRD generation
(Optional) Implement practical services for OpenFlow scenario
(Optional) Implement the service Routing Service Abstraction
(Optional) Implement practical services using BGP information

Release Deliverables

Name Description

alto-core
Define the new YANG model for basic types used in ALTO
Define the models for ALTO services
Define the top-level container for ALTO services
Provide the RESTful API defined in RFC7285

alto-basic
Provide the basic (IRD) service Information Resource Directory
Provide and services that are manually configurable Network Map Cost Map
Provide based on host tracker Endpoint Cost Service

Release Milestones

Offset: 2

Milestone Offset X Date Deliverables

M1 August 6th, 2015
Name Description

Release Plan See Beryllium Release Plan for ALTO

Deliverable Name See Release Deliverables

M2 September 3th, 2015
Name Description

Release Plan See Beryllium Release Plan for ALTO

Deliverable Name See Release Deliverables

https://tools.ietf.org/html/rfc7285#section-9.2.1
https://wiki-archive.opendaylight.org/view/ALTO:Beryllium_Release_Plan#Introduction
https://wiki-archive.opendaylight.org/view/ALTO:Beryllium_Release_Plan#Release_Deliverables
https://wiki-archive.opendaylight.org/view/ALTO:Beryllium_Release_Plan#Introduction
https://wiki-archive.opendaylight.org/view/ALTO:Beryllium_Release_Plan#Release_Deliverables

1.
a.
b.

i.

M3 October 15th, 2015
Name Description

Feature Freeze

Deliverable Name Deliverable Description

M4 November 12th, 2015
Name Description

API Freeze

Deliverable Name Deliverable Description

M5 December 17th, 2015
Name Description

Code Freeze

Deliverable Name Deliverable Description

RC0 TBD
Name Description

Deliverable Name Deliverable Description

RC1 TBD
Name Description

Deliverable Name Deliverable Description

RC2 TBD
Name Description

Release Review Release Review Description

Deliverable Name Deliverable Description

Formal Release TBD
Name Description

Deliverable Name Deliverable Description

Externally Consumable APIs

Please list and describe all externally consumable APIs or point to a document that does so.
This need not be a list of all java interfaces and yang files, but should be a list of high-level functionality, e.g., flow programming.

For each such API, there should be a list of the bundles providing the API, but not necessarily the implementation.
Each PROVISIONAL or TENTATIVE API must be listed as project deliverable

Must be declared as "IN" or "OUT" at the M3 Milestone

Short
Name

Description Type (at
M2)

Type (at
M3)

Type
(release)

Contract Supporting Code

API
Name

Short
Description

One of Provisional, Tentative, Stable, or Dropped as
defined in the . Beryrllium release plan definitions

link to the Java interface, YANG file,
WSDL description, etc. that defines the
API

list of Karaf features, OSGi bundles,
directories, etc. that provide the API

Expected Dependencies on Other Projects

Providing Project Deliverable Name Needed By Acknowledged? Description

L2Switch l2switch-hosttracker M4 Yes Host Tracker from L2Switch project

Expected Incompatibilities with Other Projects

Please note any known or expected incompatibilities with other projects. For example, the different projects providing Neutron APIs have historically been
incompatible with each other. For each incompatibility:

Note which expected features are incompatible if known
Why
Whether discussions occurred with the projects of the incompatible features as to how to become compatible.

https://wiki-archive.opendaylight.org/view/Simultaneous_Release:Beryllium_Release_Plan#Definitions
https://wiki-archive.opendaylight.org/view/L2_Switch:Main

1.

b.

i. The results of those discussion.

If the incompatibility is expected, but the features are not yet know, please provide as much as is known or expected.

Projects are encouraged to engage with other projects to discuss and explore ways this incompatibility can be avoided either during this release or in a
future release.

Compatibility with Previous Releases

Since the northbound API follows the ALTO protocol defined in , thus it is fully compatible with the one in the previous release. 7285

All YANG models and interfaces

Removed APIs and/or Functionality

Please include list of a APIs and/or functionality that existed the previous release and will be removed.
For each such API/functionality, discuss any suggestions for how those who are using it should adapt.
In order for an API/functionality to be removed, it must have been deprecated in a previous release.

Functionality and/or APIs that were correctly tagged with the @Deprecated annotation in Java before the Lithium release can
be considered deprecated and thus removed in Beryllium.

Deprecated APIs and/or Functionality

Please include list of a APIs and/or functionality that existed the previous release and will be deprecated.
For each such API/functionality, discuss any suggestions for how those who are using it should adapt.
If possible, e.g., for all human-generated Java, add the @Deprecated annotation
If not possible, please note clearly things which are deprecated in a clearly visible manner

Changed APIs and/or Functionality

Please include list of a APIs and/or functionality that existed the previous release and will be changed.
For each such API/functionality, provide guidance about who will be affected and how they should adapt.
In general, project's should strive to be backward compatible with the previous release and note what functionality will be removed by
deprecating it and noting that with the @Deprecated annotations wherever possible.

Themes and Priorities

Requests from Other Projects

For each API request, the requesting project should create an entry like the example below.

Requesting Project API Name Needed By Acknowledged? Description

XYZ Project call_me M4 No This is an example to request API supported

After creating the entry, the requesting project should send an e-mail to , and both projects' dev lists using this template:release@lists.opendaylight.org

Subject: [REQUEST FOR NEW OR EXTENDED API] ${API name}

Note: This email is a request from ${requesting project} for a new or
extended API in ${providing project}.

API Name: ${API name}
Request: ${link to the request in the providing project's release plan}

Please let us know if you will be able to provide this new
functionality by the listed milestone. If you need clarifications or
help in providing the API, let us know so we can reach an agreement.

If you feel that providing this API is a bad idea regardless of where
the resources are coming from, please let us know why and ideally,
suggest and alternative.

Example Request

Requesting Project:
Providing Project: <should be this project, i.e., the project whose release plan this page is>
Requested Deliverable Name:
Needed Milestone: <e.g., M3, assumed to be at that milestone at the offset of the providing project unless otherwise stated>
Requested Deliverable Description: <description of the change or new API needed>
Response: <one of Yes, No, Tentative>

https://tools.ietf.org/html/rfc7285%7CRFC
mailto:release@lists.opendaylight.org

Description: <provides details of the response, e.g., "Yes, we can do that", "No, that's a bad idea", "No, we don't have the staff",
"Tentaive, it's a good idea, but we don't know if we can">
Resources From: <should be either the providing project if they agree to do the work or the requesting project if the agree>
Link to Section in Requesting Project Release Plan: <if No or Tentative, link to the adjustments in the requesting project's release
plan>
Link to Section in Providing Project Release Plan: <if Yes or Tentative, link to the deliverable in this release plan>

Negotiation:
<this should be a back and fort until a response of Yes, No, or Tentative is reached>
<it should probably start with a response from the providing project that can be one of Yes, No, or Tentative, OR asking for clarification>
<after that it should go back and forth reaching a conclusion and then documented in the Response and Description above>
<if the negotiation fails or stalls, the TSC will do it's best to help>

Test Tools Requirements

Please specify if the project will run System Test (ST) inside OpenDaylight cloud
In case affirmative please enumerate any test tool (mininet, etc...) you think will be required for testing your project

The goal is to start test tools installation in rackspace as soon as possible
In case negative be aware you will be required to provide System Test (ST) reports upon any release creation (weekly Release, Release
Candidate, Formal Release, etc...)

Other

	ALTO: Beryllium: Release Plan

